
What’s Reusable In Program Analysis?

[Extended Abstract]

Grigory Fedyukovich
Computer Science and Engineering, University of Washington, Seattle, Washington, USA

grigory@cs.washington.edu

Software continuously evolves to meet rapidly changing
human needs. Each evolved transformation of a program
is expected to preserve important correctness and security
properties. Aiming to assure program correctness after a
change, formal verification techniques, such as Software Model
Checking, have recently benefited from fully automated so-
lutions based on symbolic reasoning and abstraction. How-
ever, the majority of the state-of-the-art model checkers are
designed that each new software version has to be verified
from scratch.

We present a survey on Formal Incremental Verification
(FIV) techniques that aim at making software analysis more
efficient by reusing invested efforts between verification runs.
In order to show that FIV can be built on top of different
verification techniques, we focus on three complementary
approaches to automated formal verification.

First, we present a FIV technique for SAT-based Bounded
Model Checking (BMC) developed to verify programs with
nested functions with respect to the set of pre-defined as-
sertions. We propose a function-summarization framework
that allows extracting and reusing over-approxi-mations of
function behaviors. We introduce an algorithm to revalidate
the summaries of one program locally in order to prevent re-
verification of another program from scratch.

Second, we present a technique for simulation relation syn-
thesis for loop-free programs that do not necessarily con-
tain assertions. We introduce an SMT-based abstraction-
refinement algorithm that proceeds by guessing a relation
and checking whether it is a simulation relation. We propose
a novel algorithm for discovering simulations symbolically,
by means of solving ∀∃-formulas and extracting witnessing
Skolem relations.

Third, we present a FIV technique for SMT-based Un-
bounded Model Checking developed to verify programs with
(possibly nested) loops. We propose an algorithm that au-
tomatically derives simulations between programs with dif-
ferent loop structures. The automatically synthesized sim-
ulation relation is then used to migrate the safe inductive
invariants across the evolution boundaries.

1. SAT-Based Bounded Model Checking via
Function Summarization

BMC is one of the most successful formal techniques in
academia and industry. In a nutshell, a classical BMC tool
proceeds in 3 main steps. First, it unwinds all loops and
recursive function calls up to a given number of iterations
and a given recursion depth respectively. This phase results
in the unwound program represented by the so called Static
Single Assignment (SSA) form in which all variables are as-
signed at most once. The SSA form is then conjoined with
the negation of the assertion. Second, the constructed SSA
form is encoded to a so called BMC formula and sent to the
appropriate SAT or SMT solver. Finally, the rest of the job
is done by the solver: if the formula is proven unsatisfiable
then the program is safe up to the given bound; otherwise
each model of the formula witnesses a counter-example.

The biggest challenge in BMC related to FIV is search-
ing for a reusable specification, i.e., an essence to migrate
between verification runs. We propose to exploit the fact
that the bounded safety of the program is indicated by the
unsatisfiability of the BMC formula. In the context of SAT-
based BMC, we show that the proof of unsatisfiability can be
further used to discover over-approximating function sum-
maries that gather all important information of the func-
tion’s behavior to prove the bounded safety. Finally, we
present a novel technique based on Craig interpolation [1]
to achieve cheap and flexible function summarization.

The next challenge in BMC related to FIV is searching for
an algorithm that effectively reuses the summaries synthe-
sized after the verification of one program version to verify
another program version. We propose to revalidate the ex-
isting summaries locally in order to prevent re-verification of
the entire code from scratch. If the check fails for some func-
tion call, it needs to be propagated by the call tree traversal
to the caller of the function. If the check fails for the root
of the call tree (i.e., the “main” function of the program),
the whole program should be verified from scratch. On the
other side, if for each function call there exists an ancestor
function with the valid old summary then the new program
version is safe up to the predefined bound. Finally, for func-
tions whose old summaries are not valid any longer, the new
summaries are re-synthesized.

We refer the reader to the following papers to get more de-
tails of the technique, its implementation in a tool eVolCheck
and evaluation: [10], [9], [5], and [6].

2. SMT-Based Simulation Discovery
Simulation [8] is one of the oldest concepts in program



analysis, introduced as early as Hoare logic. A simulation
relation represents a condition under which the complete
set of behaviors of one program (later referred to as source
and denoted by S) is included into the set of behaviors of
another program (later referred to as target and denoted
by T ). Simulation discovery is a useful procedure for FIV
since it does not require any assertions to be specified at the
programs. Indeed, if S is simulated by T then all assertions
that hold in T will also hold in S. Thus, a discovered simula-
tion provides a more precise verification certificate (namely,
a relational specification) than the function-summarization
BMC approach from Sect. 1. When synthesized, this re-
lational specification is an important ingredient for another
class of FIV (to be discussed in Sect. 3), since it allows lifting
the safe inductive invariants from T to S.

In realistic applications, there might be a sufficient seman-
tic gap between S and T that essentially raises two chal-
lenges of finding an appropriate simulation relation between
S and T : (1) the challenge of constructing a total simulation
relation between two programs, and (2) whenever the target
T does not simulate the source S, the challenge of finding
an abstraction of the target T that simulates the source S.

We propose an SMT-based solution for these challenges.
Our algorithm uses an abstraction-refinement reasoning which
proceeds by guessing a relation and checking whether it is
a simulation relation. We propose to reduce the problem of
checking simulation to deciding validity of formulas of the
form ∀x · S(x) =⇒ ∃y · T (x, y). Intuitively, the formu-
las say “for each behavior of S there exists a corresponding
behavior of T”. We manipulate implicit abstractions of T
by introducing existential quantifiers to the right-hand-side
of the ∀∃-formulas. We present a novel algorithm AE-VAL
for deciding validity of ∀∃-formulas that is based on efficient
computations of the Model-Based Projections [7]. In ad-
dition, AE-VAL extracts a Skolem relation to witness the
existential quantifiers. This Skolem relation is the key to re-
fine the considered abstractions of T , and therefore requires
to be minimized and factored. As a solution to this chal-
lenge, we propose to post-process the results of AE-VAL
that results in a Skolem relation of the appropriate form.

We refer the reader to the paper [3] to get more details
of the technique, its implementation in a tool SimAbs and
evaluation.

3. SMT-Based Unbounded Model Checking via
Abstract Simulation

The approaches to Unbounded Software Model Checking
reduce the verification tasks to finding safe inductive invari-
ants. The safe inductive invariants play an important role of
proof certificates and over-approximate all safe behaviors of
the program. Therefore, these techniques are served to pro-
vide sound analysis of the programs with unbounded (and
possibly nested) loops. To compactly represent such com-
plex programs, model checkers use a “large-block” encoding
(LBE) that collapses the control-flow graph (CFG) into the
Cut-Point Graph (CPG). In CPG, the nodes represent heads
of the loops (called cutpoints), and the edges represent the
longest loop-free program fragments. Whenever a program
is proven safe, the CPG is labeled by predicates, such that
for each CPG-edge the labeling of the corresponding in- and
out- nodes constitutes a valid Hoare triple.

We refer to the challenge of constructing a FIV technique
for Unbounded Model Checking as establishing a Property

Directed Equivalence (PDE) between programs, i.e., to check
whether the programs are happy with the same safe induc-
tive invariant. Clearly, in contrast to BMC-based FIV (out-
lined in Sect. 1), PDE does not have a challenge for synthe-
sizing a reusable specification, since the safe inductive in-
variants perfectly fit this goal. However, there still remains
a challenge of migrating the existing invariant between two
programs (the already verified one, and the modified an-
other one). We propose a solution based on the concept
of Abstract Simulation outlined in Sect. 2. We contribute
an algorithm that performs an iterative abstract-refinement
reasoning to automatically derive an abstraction of the al-
ready verified program that simulates the precise modified
program.

One important feature of the algorithm is that it guides
the abstraction generation by the safe inductive invariant.
If a simulation for such a proof-based abstraction is found
then the proof can be migrated directly. Another distin-
guishing feature of the algorithm is the ability to migrate
the invariants through abstractions even if the abstractions
do not preserve safety. It attempts to lift as much informa-
tion from the invariant as possible, and then strengthens it
using a Horn-based unbounded model checker.

We refer the reader to the papers [2] and [4] to get more de-
tails of the technique, its implementation in tools ASSI+PDE
and evaluation.

4. REFERENCES
[1] W. Craig. Three uses of the Herbrand-Gentzen

theorem in relating model theory and proof theory. In
J. of Symbolic Logic, pages 269–285, 1957.

[2] G. Fedyukovich, A. Gurfinkel, and N. Sharygina.
Incremental verification of compiler optimizations. In
NFM, volume 8430 of LNCS, pages 300–306. Springer,
2014.

[3] G. Fedyukovich, A. Gurfinkel, and N. Sharygina.
Automated discovery of simulation between programs.
In LPAR, volume 9450, pages 606–621. Springer, 2015.

[4] G. Fedyukovich, A. Gurfinkel, and N. Sharygina.
Property directed equivalence via abstract simulation.
In CAV, volume 9780, Part II, pages 433–453.
Springer, 2016.

[5] G. Fedyukovich, O. Sery, and N. Sharygina.
eVolCheck: Incremental Upgrade Checker for C. In
TACAS, volume 7795 of LNCS, pages 292–307.
Springer, 2013.

[6] G. Fedyukovich, O. Sery, and N. Sharygina. Flexible
SAT-based Framework for Incremental Bounded
Upgrade Checking. STTT, 17:1–18, 2015.

[7] A. Komuravelli, A. Gurfinkel, and S. Chaki.
SMT-Based Model Checking for Recursive Programs.
In CAV, volume 8559 of LNCS, pages 17–34, 2014.

[8] R. Milner. An algebraic definition of simulation
between programs. In IJCAI, pages 481–489, 1971.

[9] O. Sery, G. Fedyukovich, and N. Sharygina.
Incremental Upgrade Checking by Means of
Interpolation-based Function Summaries. In FMCAD,
pages 114–121. IEEE, 2012.

[10] O. Sery, G. Fedyukovich, and N. Sharygina.
Interpolation-based Function Summaries in Bounded
Model Checking. In HVC, volume 7261 of LNCS,
pages 160–175. Springer, 2012.


