
Machine Learning-Guided Adaptive Program Analysis

Hakjoo Oh
Korea University

hakjoo oh@korea.ac.kr

Kihong Heo
Seoul National University
khheo@ropas.snu.ac.kr

Hongseok Yang
University of Oxford

hongseok.yang@cs.ox.ac.uk

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

1. Overview
In this talk, we present our experiences to use machine
learning techniques for automatically adapting a program
analysis to a given verification task. Building a cost-effective
static analyzer for real-world programs is regarded an art,
mainly because of the difficulty in balancing the cost and the
precision of an analyzer. An ideal analyzer should be able
to adapt to a given analysis task automatically, and avoid
using techniques that unnecessarily improve precision and
increase analysis cost. However, designing a good adaptation
strategy is highly nontrivial, and it requires a large amount
of engineering efforts. We aim to automate this procedure by
learning a good strategy from an existing codebase.

This talk is based on our recent work [1, 4] and an on-
going project, which are summarized in Sections 2, 3, and 4,
respectively.

2. Learning via Bayesian Optimization
In [4], we present an approach for building an adaptive
static analyzer, which can learn its adaptation strategy from
an existing codebase via Bayesian optimization. In our ap-
proach, the analyzer includes a parameterized strategy that
decides, for each part of a given program, whether to ap-
ply a precision-improving technique to that part or not. This
strategy is defined in terms of a function that scores parts of
a program. The strategy evaluates parts of a given program
using this function, chooses the top k parts for some fixed k,
and applies the precision-improving technique to these parts

[Copyright notice will appear here once ’preprint’ option is removed.]

only. The parameter of the strategy controls this entire se-
lection process by being a central component of the scoring
function.

The success of such an analyzer depends on finding a
good parameter for its adaptation strategy. As typical in other
machine learning techniques, this learning part is formulated
as an optimization problem: find a parameter that maximizes
the number of queries in the codebase which are proved
by the analyzer. This is a challenging optimization problem
because evaluating its objective function involves running
the analyzer over several programs and so it is expensive.
We present an (approximate) solver for the problem that uses
the powerful Bayesian optimization technique and avoids
expensive calls to the program analyzer as much as possible.

Using our approach, we developed partially flow-sensitive
and context-sensitive variants of Sparrow [3], a realistic C
program analyzer. The experimental results confirm that us-
ing an efficient optimization solver such as ours based on
Bayesian optimization is crucial for learning a good pa-
rameter from an existing codebase; a naive approach for
learning simply does not scale. When our partially flow- and
context-sensitive analyzer was run with a learnt parameter, it
answered the 75% of the buffer-overrun queries that require
flow- or context-sensitivity, while increasing the analysis
cost only by 3.3x of the flow- and context-insensitive analy-
sis, rather than 40x or more of the fully sensitive version.

3. Learning from Automatically Generated
Labeled Data

In [1], we propose a new method for automatically learning a
variable-clustering strategy for the Octagon analysis from a
given codebase. Relational program analyses track sophisti-
cated relationships among program variables and enable the
automatic verification of complex properties of programs.
However, the computational costs of various operations of
these analyses are high so that vanilla implementations of
the analyses do not scale even to moderate-sized programs.
One of the most popular optimizations used by practical

1 2016/7/29



relational program analyses is variable clustering. Given a
program, an analyzer with this optimization forms multiple
relatively-small subsets of variables, called variable clusters
or clusters. Then, it limits the tracked information to the re-
lationships among variables within each cluster, not across
those clusters, increasing the analysis scalability substan-
tially. However, the effectiveness of this technique comes
only when a good strategy for clustering is used. Our goal is
to automatically learn such a strategy from an existing code-
base.

The most important aspect of our learning method is the
automatic provision of labeled data. Although the method
is essentially an instance of supervised learning, it does not
require the common unpleasant involvement of humans in
supervised learning, namely, labeling. Our method takes a
codebase consisting of typical programs of small-to-medium
size, and automatically generates labels for pairs of variables
in those programs by using the impact pre-analysis from our
previous work [2], which estimates the impact of tracking re-
lationships among variables by Octagon on proving queries
in given programs. Because this learning occurs offline, we
can bear the cost of the pre-analysis, which is still signifi-
cantly lower than the cost of the full Octagon analysis. Once
labeled data are generated, our method runs an off-the-shelf
classification algorithm, such as decision-tree inference, for
inferring a classifier for those labeled data. Conceptually,
the inferred classifier is a further approximation of the pre-
analysis, which gets found automatically from a given code-
base.

The experimental results show that our method results in
the learning of a cost-effective variable-clustering strategy.
We implemented our learning method on top of Sparrow [3]
and tested against open source benchmarks. In the experi-
ments, our analysis with the learned variable-clustering strat-
egy scales up to 100KLOC within the two times of the anal-
ysis cost of the Interval analysis. This corresponds to the 33x
speed-up of the selective relational analysis based on the im-
pact pre-analysis [2] (which was already significantly faster
than the original Octagon analysis). The price of speed-up
was mere 2% increase of false alarms.

4. Learning with Automatically Generated
Features

In the last part of this talk, we introduce our on-going work
to automatically generate features used in machine learning
models. Although we succeeded to develop machine learn-
ing algorithms for adapting program analyses [1, 4], it has an
important limitation; the success of the learning approaches
crucially depends on the features used, but those features
must be manually crafted by human experts. This feature
construction process is not only nontrivial and tedious but
also hard to reuse and transfer from one analysis to an-
other, preventing the learning approaches from being widely
adopted. Our aim is to automate this feature construction

process. We will describe the key idea of our approach and
present the preliminary experimental results.

References
[1] Kihong Heo, Hakjoo Oh, and Hongseok Yang. Learning a

variable-clustering strategy for octagon from labeled data gen-
erated by a static analysis. In SAS, 2016.

[2] Hakjoo Oh, , Wonchan Lee, Kihong Heo, Hongseok Yang, and
Kwangkeun Yi. Selective context-sensitivity guided by impact
pre-analysis. In PLDI, 2014.

[3] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and
Kwangkeun Yi. Sparrow. http://ropas.snu.ac.kr/

sparrow.

[4] Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Learning a
strategy for adapting a program analysis via Bayesian optimi-
sation. In OOPSLA, 2015.

2 2016/7/29


