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We propose a deductive reasoning approach to the au-
tomatic verification of temporal properties of pointer pro-
grams, based on cyclic proof. The simplicity and expres-
sive power of temporal logics allow us to verify complex
safety (“something bad cannot happen”) and liveness prop-
erties (“something good eventually happens”) of heap pro-
grams [11].

As an example consider the following nonterminating pro-
gram that nondeterministically alternates between emptying
the heap and appending an arbitrary number of elements to
the head of a list structure.

while(true){

if(*) {

while(x!=nil) {

temp:=x.next; free(x); x:=temp;

} else {

while(*) {

y:=new(); y.next:=x; x:=y;

} } }

Employing temporal logic allows us to not only verify com-
mon safety and nonterminating properties, but we could also
express more elaborated ones, say for example, that it is al-
ways possible for the heap to be empty, expressed in CTL
as AGEF (emp),

Historically, perhaps the most popular approach to ensur-
ing that a program has a given temporal logic property has
been model checking : one first builds an abstract model that
overapproximates all possible executions of the program,
and then checks that the desired temporal property holds
of this model (see e.g. [4, 5, 2]). However, this approach has
been applied in the literature mainly to integer programs;
the situation for memory-aware programs over heap data
structures becomes significantly more challenging, mainly
because of the difficulties in constructing suitable abstract
models.

One possible approach is simply to translate such heap-
aware programs into integer variables, in such a way that
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properties such as memory safety or termination of the orig-
inal program follows from a corresponding property in its
integer translation [12, 4, 5]. However, for more general
temporal properties, this technique might produce unsound
results. In general, it is not clear whether it is feasible to
provide suitable translations from heap to integer programs
for any temporal property we might wish to prove.

Here, we instead approach the above problem via the main
(perhaps less fashionable) alternative to model checking,
namely the direct deductive verification of pointer problems.
We formulate a proof system manipulating temporal judge-
ments about programs, and attempt to directly construct
a proof that a program has a given temporal property by
means of an automatic proof search.

Given some fixed program, the judgements of our system
express a temporal property of the program when started
from any state satisfying precondition written in the sym-
bolic heap [6] fragment of separation logic [14] extended with
user-defined inductive predicates [8], a well-known language
for abstractly describing the heap memory.

We examine two concrete temporal languages, the first
based on computation tree logic (CTL) [1], where the tem-
poral operators quantify over execution paths from a given
program state, and the second on linear time logic (LTL) [13]
where the temporal operators quantify events along a given
path. To achieve the notion of seeing the execution of a pro-
gram as a collection of traces, a different handling of non-
determinism in our system is required, for which we employ
the technique of prophecy variables (cf. [3]) that effectively
predict the outcome of nondeterministic choices.

The core of our proof systems is a set of symbolic execution
rules that simulate program execution steps, so that there
is a direct and natural correspondence between traces of the
program and paths of judgements in our proofs. To handle
the fact that symbolic execution can in general be applied
ad infinitum, we employ the increasingly popular technique
of cyclic proof [15, 7, 8, 9], in which proofs are finite cyclic
graphs subject to a global soundness condition. Using this
approach, we are able to verify temporal properties in an
automatic and sound way.

Our implementation is built on top of the Cyclist the-
orem prover [9], a mechanised cyclic theorem proving frame-
work. The core algorithm performs iterative depth-first proof
search, aimed at closing open nodes in the derivation tree
by either applying an inference rule or forming a back-link
to an identical previous node previously discovered. The
automated application of derivation rules is largely guided
by the structure of the temporal property required to prove.



We first attempt to form back-links as early as possible to
reduce the size of our explorations. If a back-link cannot
be soundly formed, we instead attempt to apply symbolic
execution; if this is not possible, we try unfolding temporal
operators and inductive predicates in the precondition to
enable symbolic execution to proceed. When all open nodes
have been closed, a global soundness check of the cyclic proof
is performed automatically. The details of the implemen-
tation, source code and benchmarks are publicly available
at [10].

We evaluate our tool on handcrafted nondeterministic and
nonterminating programs that operate on heap data struc-
tures similar to the example previously introduced. More-
over, we also cover sample programs taken from the Win-
dows Update system, the back-end infrastructure of the Post-
greSQL database server and an implementation of the acquire-
release algorithm taken from previous model checking pa-
pers [3, 4]. Our experiments demonstrate the viability of
our approach since our runtimes are mostly in the range of
milliseconds and show similar performance to existing tools
for the model checking benchmarks. The main advantages
of our approach are that, thanks to the use of separation
logic and a deductive proof system, we do not need to apply
approximation or transformations to the program before at-
tempting to verify it, and, furthermore, we never obtain false
positive results. However, we do not guarantee termination
or completeness (and achieving both is of course impossible).
Thus we believe that our technique offers an interesting and
potentially useful complement to model checking approaches
(although not a replacement for them).
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