ARCTIC
A Static Analyzer for COBOL-85 Programs

Roberto Giacobazzi
University of Verona
Ttaly
roberto.giacobazzi@univr.it

Abstract

We developed a static analyzer for COBOL-85 programs,
called ArcTic (AbstRaCT Interpretation of Cobol). It cur-
rently performs a lot of syntactic analyses, as well as seman-
tic interval analysis. Semantic analysis is performed on an
intermediate imperative language, simpler than Cosor. It
has arithmetic operations, assignment, If and While state-
ments. Each CoBoL statement is translated into this language
by a translator, an entity mapping different equivalent (sets
of) statements into the same intermediate code. Every inter-
mediate statement has an associated execute function that
transforms state by modifying domain elements correspond-
ing to each variable. Other than simpler statements, for If
the execution is delegated to the two branches. For While,
the execute function incorporates fixpoint computation for
loops. The tool has command-line and remote interfaces, and
can be used by means of a SonarQube plug-in.

Keywords Static Analysis, Abstract Interpretation, Soft-
ware Engineering

1 Introduction

CosoL was designed in 1959 by CODASYL and still repre-
sents among the most widespread programming language
on which legacy code is written and maintained [1]. In 1997,
the Gartner Group reported that 80% of the world’s busi-
ness ran on CoBoL with over 200 billion lines of code and 5
billion lines more being written annually [8]. Well known
bugs such as the year 2000 problem (Y2K) was the focus
of significant CoBoL programming effort, sometimes by the
same programmers who had designed the systems decades
before. In 2006 and 2012, Computerworld surveys found that
over 60% of organizations used CoBoL (more than C++ and
Visual Basic .NET) and that for half of those, CoBoL was
used for the majority of their internal software. 36% of man-
agers said they planned to migrate from CoBoL, and 25%
said they would like to if it was cheaper. It is expected that
maintaining legacy CoBoL code will represent a major prob-
lem in next decades. Making changes to software and in
particular unnecessary, uncontrolled, and careless changes,
can have an effect on its appropriateness and validity, its

TAPAS ’18, August 28, 2018, Freiburg im Breisgau, Germany
2018.

Alberto Lovato

University of Verona

Italy

alberto.lovato@univr.it

Isabella Mastroeni
University of Verona
Italy
isabella.mastroeni@univr.it

correct operation, and can make it less efficient, or in ex-
treme cases obsolete. From the research and academic point
of view, CoBoL is considered marginal and of modest interest,
although still the largest part of the legacy code is written
in this language. Expert CoBoL programmers are nearly re-
tiring and the higher education system does not provide
new and well skilled programmers capable of maintaining
and patching the huge amount of legacy code that is still
running everyday in enterprises and financial institutions.
Moreover, the lack of interest of the academic and research
community in the study and development of CoBor has been
standing for decades. As a consequence, the structure of ex-
isting tools and methods for debugging and verifying CoBorL
programs reflects this retard, often employing out of date
technologies (mostly based on simple syntactic analysis or
pattern matching with known bug repositories). Few tools
exist that are based on formal methods for the verification
and debugging of CoBoL programs and none of them employ
sound-by-construction program verifiers and debuggers. For-
mal methods [7] are mathematically based techniques for
the specification, development, and verification of software
and hardware systems. They establish the satisfaction of
a required property (called the specification) by a formal
model (called the semantics) of the behavior of a system
(for example, a program and its physical environment). For-
mal (logic based) verification methods are very hard to put
in practice for large code, because both the semantics and
the specification of a complex system are extremely difficult
to define. Even when this is possible, the proof cannot be
automated without great computational costs and none of
these methods are used for verifying CoBoL code. Static code
analysis is the fully automatic analysis of a computer system
by direct inspection of the source or object code describ-
ing the system with respect to the semantics of the code
(without executing programs, as in dynamic analysis). Ab-
stract interpretation [6] is a standard and well recognized
method for the design and implementation of scalable and
sound static analysis tools. We propose the prototype of a
sound-by-construction static program analyzer for CoBorL
programs for the verification of well defined properties. In
particular, the analysis we propose allows numerical variable
bound checking, but in the future we plan to develop other
checks, such as taint analysis and type conversion analysis.

TAPAS *18, August 28, 2018, Freiburg im Breisgau, Germany

2 Tool Description

The analyzer was developed in Java, and considers programs
written following the COBOL-85 standard. Analyzing CosoL
programs involves basically three phases:

e parsing CoBoL code

e building an internal representation of the parsed pro-
gram

e running analyses on this internal representation

Figure 1. Phases of the analysis of a CoBoL program

proleap-cobol-parser

COBOL v Internal
representation

code
Fx=1
ADD 170

ELSE
SUBTRACT 2 FROM x
ISPLAY x

END-IF

Parsing COBOL-85 is the most widespread CoBoL stan-
dard in use, and the one we decided to focus on. The syntax
of CoBor, despite having a simple structure, is very wordy,
since the designers wanted to create a programming lan-
guage resembling English, to allow non-technical people,
such as managers, to comprehend programs. This means a
lot of keywords, and constructs. Indeed, the same code can
be represented by many different (sets of) statements. As a
simple example, the following three statements are equiva-
lent:

ADD 1 TO X

ADD 1 TO X GIVING X

COMPUTE X = X + 1
There are also different dialects. Parsing in our tool is made
by an external library, proleap-cobol-parser [2], a parser for
COBOL-85, supporting ANSI 85, IBM OS/VS and MicroFocus
dialects. It is actively developed, and used by several clients.
We are contributing in reporting bugs encountered in parsing
legacy CoBoL code. The parser produces an abstract syntax
tree (AST), representing CoBoL elements such as divisions,
statements and declarations in a hierarchical way. Elements
of the AST can be accessed by using a visitor, a well-known
pattern allowing client programmers to act on elements of a
certain type by simply overriding a method in a class. Right
after parsing, syntactic checks can be made. We developed
more than 100 different syntactic analyses, checking simple—
but undeniably significant—facts about code, like the use
of obsolete or insecure statements, bad coding practices,
or type errors. For example, the ACCEPT statement reads
input from external sources, including standard input. In
general, its use must be avoided, since it is a security threat
to allow direct input from a user. As another example, too
many nested control-flow statements, like PERFORM, IF or
EVALUATE, make programs complex and difficult to maintain,

Roberto Giacobazzi, Alberto Lovato, and Isabella Mastroeni

so the nesting should be limited. These rules can be enforced
by syntactic inspection of code.

Some analyses check the SQL code inserted into CoBoL
programs. The CoBoL parser allows clients to access the
SQL code enclosed in an EXEC SQL statement. This string
of SQL code is then parsed with another external library,
JSqlParser [3], by using the visitor pattern again.

Internal Representation For semantic analysis, parsed
CoBoL code is translated into an equivalent, much simpler
language. It is an imperative language, with numeric vari-
ables, like those of CoBoL. They can contain signed decimal
numbers with an integer part and a fractional part. The ex-
act type of the variable is declared in CoBoL with a PICTURE
clause. For example, the string S99V9 indicates a sign, two
digits for the integer part and one for the fractional. Regard-
ing statements, it has arithmetic operations, assignment, If
and While. Translators are classes with a translate method
that transforms CoBoL statements into intermediate state-
ments. COBOL statements that concern arithmetic compu-
tation have corresponding intermediate statements, while
those that are not (like DISPLAY) are translated into Skip
statements, doing nothing. They are not simply deleted be-
cause they are used to keep track of original source and
state at input of statement. Currently COMPUTE and CALL
statements are approximated by the Unknown intermediate
statement, that assigns the infinite interval (the most gen-
eral information) to affected variables. In the future they
surely could be represented by more precise intermediate
statements.

Analysis The interaction between components happening
when the interpreter executes the intermediate program is
explained in Figure 2. For each statement in the program, the

Interpreter Program Statement

execute(program)

getlnitialState()

getStatements() 7

loop J

[for each statement] execute(state)

state J

Figure 2. Execution of the program by the interpreter

execute method is called. The output state of the previous
statement is used as input for the current statement. A state-
ment can contain other statements—for example, branches
of If—which transform state as well. Statements are imple-
mented such that execute is called on the sub-statements

ARCTIC

whenever it is called on them. We initially focused on inter-
val analysis, because it is simpler, but still can give valuable
information on the content of each variable.

For interval representation and manipulation, the analyzer
uses the bd-intervals library we developed. It implements
arithmetic operations for intervals whose finite bounds are
backed by BigDecimal objects. These are arbitrary preci-
sion decimal numbers, and so they can represent CoBoL
numeric values exactly. It features addition, subtraction, mul-
tiplication, division, along with union, intersection, widening
and narrowing. It was developed entirely test-driven. The
state of an Interval object is composed of the two bounds,
of type Bound. The Bound interface has implementations
BigDecimalBound, EmptyBound, InfiniteBound. The latter
has concrete subclasses NegativeInfiniteBound and Pos-
itiveInfiniteBound. This hierarchy permits the creation
of all intervals of interest, and makes the code simpler, by
enabling dynamic dispatch to the class where responsibility
lies for each particular operation. Interval objects are im-
mutable, and hence they can be used in a concurrent context
without additional precautions.

2.1 Development

The analyzer is currently in development at the University of
Verona, using modern programming practices. Adopting test-
driven development (TDD) allowed us to create modular and
robust code. With TDD, production code is correct by design,
with respect to the specifications formalized in test code. If
tests pass, code is correct. Writing tests beforehand makes
the system under test concise, modular and loosely coupled,
since dependencies are not hardwired into production code.
In fact, auxiliary objects used in production are generally
substituted by fake objects when testing, and in order to
inject references to these in place of real objects, dependency-
breaking mechanisms are employed. With such a modular
system, work can be distributed easily among developers.

3 SonarQube Plug-in

SonarQube [5] is a widely used platform for code quality
management. Its most important module is a server program,
to which one can connect with a browser and see statistics
and issues related to a software project. A SonarQube scanner
is a program that runs analyses and other computations
on code, and then sends results to the server. The server
saves the issues and provides a web interface that presents
them nicely. For this reason, we are developing a plug-in
for SonarQube, that communicates with the server version
of ArcTiIc and presents issues to the user. Figure 3 depicts
interactions taking place when analyses are carried out by
means of the plug-in. First of all, the list of active rules,
i.e., those selected by the SonarQube user in the desired
quality profile, is sent to the server. Then, issues related to
analyzed files are sent back to the plug-in. Figure 4 shows

TAPAS 18, August 28, 2018, Freiburg im Breisgau, Germany

Arctic
SonarQube
Plug-in

Arctic
Server

1 1
. .

active rules

[for each source file]

loop J

path

issues

Figure 3. Interactions between the server and the Sonar-
Qube plug-in

issues generated by the interval analysis rule, as presented
by the web interface of SonarQube.

2 intervalsDemo = factorial.cbl

S intervalsDemo
[ftactorial.cbl 17
IDENTIFICATION DIVISION.

2 PROGRAM-ID. factorial.
3

DATA DIVISION.
WORKING-STORAGE SECTION.
01 x PIC 99.
01 res PIC 9999 VALUE 1.

PROCEDURE DIVISION.
Li] MOVE 7 TO x

x: [0, O] res: [1, 1]

@ Code Smell~ @ Info ~ O Open ~ Notassigned > Comment

12 (i] PERFORM UNTIL x <= 1

X:[7, 7] res: [1, 1]
® Code Smell~ @ Info ~ O Open ~ Notassigned ~ Comment

13 Li] MULTIPLY x BY res

x: [2, +Inf] res: [-Inf, +Inf]
@ Code Smell> @ Info ~ O Open ~ Notassigned > Comment

i] SUBTRACT 1 FROM x

x: [2, +Inf] res: [Hnf, +Inf]
@ Code Smell* @ Info ~ O Open ~ Notassigned ¥ Comment

END-PERFORM
L) DISPLAY res.

x: [1, 1] res: [-Int, +Inf]
& Code Smell* @ Info ¥ O Open v Notassigned ¥ Comment

Figure 4. SonarQube view of interval analysis, where each
issue represents intervals that are valid before the statement

4 Future Work

We intend to develop other analyses that will provide in-
formation useful in the discovering of important classes of
vulnerabilities, such as injections of malicious code. Julia [4]
is a mature static analyzer for Java code, performing many
syntactic and semantic checks. In the future we might want
to collaborate with the Julia team to integrate analyses and
domains.

TAPAS *18, August 28, 2018, Freiburg im Breisgau, Germany Roberto Giacobazzi, Alberto Lovato, and Isabella Mastroeni

References

[1] 2009. IBM: Cobol z/OS language reference. (2009).

[2] 2018. COBOL-85 parser. https://github.com/uwol/proleap-cobol-parser.
(2018). Accessed: 2018-08-04.

[3] 2018.Java SQL parser. https://github.com/JSQLParser/JSqlParser. (2018).
Accessed: 2018-08-04.

[4] 2018. The Julia Static Analyzer. http://www.juliasoft.com. (2018). Ac-
cessed: 2018-08-04.

[5] 2018. SonarQube platform. https://www.sonarqube.org/. (2018). Ac-
cessed: 2018-08-04.

[6] P.Cousot and R. Cousot. 1977. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Conference Record of the 4th ACM Symposium on
Principles of Programming Languages (POPL °77). ACM Press, 238-252.

[7] M.Hinchey, M. Jackson, P. Cousot, B. Cook, J. P. Bowen, and T. Margaria.
2008. Software engineering and formal methods. Comm. of The ACM
51, 9 (2008), 54-59.

[8] R.Kizior and D. Carrand P. Halpern. 2000. Does COBOL Have a Future?.
In Proceedings of the Information Systems Education Conference.

https://github.com/uwol/proleap-cobol-parser
https://github.com/JSQLParser/JSqlParser
http://www.juliasoft.com
https://www.sonarqube.org/

	Abstract
	1 Introduction
	2 Tool Description
	2.1 Development

	3 SonarQube Plug-in
	4 Future Work
	References

