
Pre-proceedings for TAPAS 2019

The 10th Workshop on Tools
for Automatic Program Analysis

Affiliated to SAS 2019
The 26th Static Analysis Symposium

Part of
the 3rd World Congress

on Formal Methods

Porto, Portugal 8 October 2019

2

Preface

In recent years, a wide range of static analysis tools have emerged, some of
which are currently in industrial use or are well beyond the advanced prototype
level. Many impressive practical results have been obtained, which allow complex
properties to be proven or checked in a fully or semi-automatic way, even in the
context of complex software developments. In parallel, the techniques to design
and implement static analysis tools have improved significantly, and much effort
is being put into engineering the tools.

TAPAS 2019, the 10th Workshop on Tools for Automatic Program Analysis
is intended to promote discussions and exchange experience between specialists
in all areas of program analysis design and implementation and static analysis
tool users.

These pre-proceedings enclose the contrubutions to TAPAS 2019. Besides
these contributions, the program of that tenth edition will feature two invited
talks and one invited keynote.

We would like to thank everyone who was involved in the organization of the
workshop. We are very thankful for the members of the Programme Committee
for their evaluation work, and for all the discussions on the organization of the
event.

Finally, we would also like to thank the authors and the invited speakers for
their contributions to the programme of TAPAS 2019.

October 2019 David Delmas

Organization

Program Committee Chair

David Delmas Airbus and Sorbonne Université, France

Program Committee

Fausto Spoto Università di Verona, Italy
Caterina Urban Inria, France
Franck Vedrine CEA LIST, France
Jules Villard Facebook, UK
Jingling Xue University of New South Wales, Australia
Tomofumi Yuki Inria, France
Sarah Zennou Airbus, France

Table of Contents

PrideMM: Second Order Model Checking for
Memory Consistency Models
Simon Cooksey, Sarah Harris, Mark Batty, Radu Grigore and

Mikolas Janota . 7

fkcc: the Farkas Calculator
Christophe Alias . 27

Experiments in Context-Sensitive Incremental and
Modular Static Analysis in CiaoPP (Extended
Abstract)
Isabel Garcia-Contreras, Jose F. Morales and Manuel V.

Hermenegildo . 39

Boost the Impact of Continuous Formal Verification
in Industry
Felipe R. Monteiro, Mikhail R. Gadelha and Lucas Cordeiro 41

Handling Heap Data Structures in Backward
Symbolic Execution
Robert Husák, Jan Kofron and Filip Zavoral 48

AuthCheck: Program-state Analysis for Access-
control Vulnerabilities
Goran Piskachev, Tobias Petrasch, Johannes Späth and Eric

Bodden . 67

Leveraging Highly Automated Theorem Proving for
Certification
Deni Raco, Bernhard Rumpe and Sebastian Stüber 82

IV Organization

PrideMM: Second Order Model Checking for
Memory Consistency Models

Simon Cooksey1, Sarah Harris1, Mark Batty1, Radu Grigore1, and
Mikoláš Janota2

1 University of Kent, Canterbury
{sjc205,seh53,mjb211,rg399}@kent.ac.uk

2 IST/INESC-ID, University of Lisbon

Abstract. We present PrideMM, an efficient model checker for second-
order logic enabled by recent breakthroughs in quantified satisfiability
solvers. We argue that second-order logic sits at a sweet spot: constrained
enough to enable practical solving, yet expressive enough to cover an
important class of problems not amenable to (non-quantified) satisfiability
solvers. To the best of our knowledge PrideMM is the first automated
model checker for second-order logic formulae.

We demonstrate the usefulness of PrideMM by applying it to prob-
lems drawn from recent work on memory specifications, which define the
allowed executions of concurrent programs. For traditional memory speci-
fications, program executions can be evaluated using a satisfiability solver
or using equally powerful ad hoc techniques. However, such techniques
are insufficient for handling some emerging memory specifications.

We evaluate PrideMM by implementing a variety of memory specifi-
cations, including one that cannot be handled by satisfiability solvers. In
this problem domain, PrideMM provides usable automation, enabling a
modify-execute-evaluate pattern of development where previously manual
proof was required.

1 Introduction

This paper presents PrideMM, an efficient model checker for second-order (SO)
logic. PrideMM is used to automatically evaluate tests under the intricate mem-
ory specifications3 of aggressively optimised concurrent languages, where no
automated solution currently exists, and it is compared to existing tools over a
simpler class of memory specifications.

We argue that SO logic is a sweet spot: restrictive enough to enable efficient
solving, yet expressive enough to extend automation to a new class of memory
specifications that seek to solve open problems in concurrent language design.
PrideMM enables a modify-execute-evaluate pattern of memory-specification
development, where changes are quickly implemented and automatically tested.

3 The paper uses the term ‘memory specification’ instead of ‘memory (consistency)
model’, and reserves the word ‘model’ for its meaning from logic.

2 Authors Suppressed Due to Excessive Length

Memory specifications define what values may be read in a concurrent system.
Current evaluators rely on ad hoc algorithms [3,6,14] or satisfiability (SAT)
solvers [40]. However, flaws in existing language memory specifications [5] — where
one must account for executions introduced through aggressive optimisation —
have led to a new class of memory specifications [22,20] that cannot be practically
solved using existing ad hoc or SAT techniques.

Many memory specifications are definable in ∃SO in a natural way and one
can simulate them using SAT solvers. We demonstrate this facility of PrideMM
for a realistic C++ memory specification [24], reproducing previous results [40,39].
But, some memory specifications are naturally formulated in higher-order logic.
For example, the Jeffrey-Riely specification (J+R) comes with a formalisation,
in the proof assistant Agda [11], that clearly uses higher-order features [20]. We
observed that the problem of checking whether a program execution is allowed
by J+R can be reduced to the model checking problem for SO. From a program
execution, one obtains an SO structure A on an universe of size n, and then one
asks whether A |= JRn, where

JRn := ∃X
(
TCn(AeJn)(∅, X) ∧ F(X)

)

AeJn(P,Q) :=





sub1(P,Q) ∧ V(P) ∧ V(Q) ∧
∀X

(
TCn(AJ)(P,X)→ ∃Y

(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))

We will define precisely these formulae later (§ 5.4). For now, observe that the
formula JRn is in ∃∀∃SO. In practice, this means that it is not possible to use
SAT solvers, as that would involve an exponential explosion. That motivates
our development of an SO model checker. It is known that SO captures the
polynomial hierarchy [27, Corollary 9.9], and the canonical problem for the
polynomial hierarchy is quantified satisfiability. Hence, we built our SO model
checker on top of a quantified satisfiability solver (QBF solver), QFUN [17].

The contributions of our work are as follows:

1. we present a model checker for SO, built on top of QBF solvers;
2. we reproduce known simulation results for traditional memory specifications;
3. we simulate a memory specification (J+R) that is a representative of a class

of memory specifications that are out of the reach of traditional simulation
techniques.

2 Overview

Figure 1 shows the architecture of our memory-specification simulator. The
input is a litmus test written in the LISA language, and the output is a boolean
result. LISA is a programming language that was designed for studying memory
specifications [1]. We use LISA for its compatibility with the state-of-the-art
memory-specification checker Herd7 [3]. We transform the input program into
an event structure [41]. The memory-specification generator (MSG) produces
an SO formula. We have a few interchangeable MSGs (§ 5). For some memory

PrideMM: Second Order Model Checking for Memory Consistency Models 3

specifications (§ 5.1, § 5.2, § 5.3), which Herd7 can handle as well, the formula
is in fact fixed and does not depend at all on the event structure. For other
memory specifications (such as § 5.4), the MSG might need to look at certain
characteristics of the structure (such as its size). Finally, both the second-order
structure and the second-order formula are fed into a solver, giving a verdict for
the litmus test.

LISA AST
Event

Structure

Formula
(φ)

Structure
(A)

SO Solver Result (B)
Parse

MSG

Convertor

Fig. 1. From a LISA test case to a Y/N answer, given by the SO solver.

We are able to do so because of a key insight: relational second-order logic
represents a sweet-spot in the design space. On the one hand, it is expressive
enough such that encoding memory specifications is natural. On the other hand,
it is simple enough such that it can be solved efficiently, using emerging QBF
technology.

2.1 Memory Specifications

A memory specification describes the executions allowed by a shared-memory
concurrent system; for example, under sequential consistency (SC) [25] memory
accesses from all threads are interleaved and reads take their value from the
most recent write of the same variable. Processor speculation, memory-subsystem
reordering and compiler optimisations lead mainstream languages and processors
to violate SC, and we say such systems exhibit relaxed concurrency. Relaxed
concurrency is commonly described in an axiomatic specification (e.g. SC, ARM,
Power, x86, C++ specifications [3]), where each program execution is represented
as a graph with memory accesses as vertices, and edges representing program
structure and dynamic memory behaviour. A set of axioms permit some execution
graphs and forbid others.

Figure 2 presents a litmus test — a succinct pseudocode program designed to
probe for a particular relaxed behaviour — together with an execution graph and
an axiom. We shall discuss each in turn.

The test, called LB+ctrl, starts with x and y initialised to 0, then two threads
concurrently read and conditionally write 1 back to their respective variables.
The outcome r1 = 1 ∧ r2 = 1 (1/1) is unintuitive, and it cannot result from SC:
there is no interleaving that agrees with the program order and places the writes
of 1 before the reads for both x and y.

In an axiomatic specification, the outcome specified by the test corresponds
to the execution graph shown in Figure 2. Initialisation is elided, but the read

4 Authors Suppressed Due to Excessive Length

a: Rx 1

b: W y 1

c: R y 1

d: W x 1

rf

rf
po po

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
r1 == 1, r2 == 1 allowed?

acyclic(po ∪ rf)

Fig. 2. LB+ctrl, an axiomatic execution of it, and an axiom that forbids it.

initially x = 0, y = 0

r1 = x r2 = y

if (r1 == 1) if (r2 == 1)

{y = 1} {x = 1}
else

{x = 1}
r1 == 1, r2 == 1 allowed?

Init

Rx 0

a

Rx 1

b

W y 1
c

R y 0
d

W x 1

e

R y 1
f

W x 1

g

Fig. 3. LB+false-dep and the corresponding event structure.

and write of each thread is shown with po edges reflecting program order and rf
edges linking writes to reads that read from them. The axiom of Figure 2 forbids
the outcome 1/1 as the corresponding execution contains a cycle in po ∪ rf . The
SC, x86, Power and ARM specifications each include a variant of this axiom, all
forbidding 1/1, whereas the C++ standard omits it [6] and allows 1/1.

MemSAT [39] and Herd7 [3] automatically solve litmus tests for axiomatic
specifications using a SAT solver and ad hoc solving respectively, but not all
memory specifications fit the axiomatic paradigm.

Axiomatic specifications do not fit optimised languages. Languages like C++ and
Java perform dependency-removing optimisations that complicate their memory
specifications. For example, the second thread of the LB+false-dep test in Figure 3
can be optimised using common subexpression elimination to r2=y; x=1;. On
ARM and Power, this optimised code may be reordered, permitting the relaxed
outcome 1/1, whereas the syntactic control dependency of the original would
make 1/1 forbidden. It is common practice to use syntactic dependencies to
enforce ordering on hardware, but at the language level the optimiser removes
these false dependencies.

The memory specification of the C++ standard [15] is flawed because its
axiomatic specification cannot draw a distinction between the executions leading
to outcome 1/1 in LB+ctrl and LB+false-dep: to see that the dependency is false,
one must consider more than one execution path, but axiomatic specifications
judge single executions only [5].

Event structures capture the necessary information. A new class of specifications
aims to fix this by ordering only real dependencies [22,20,31,12]. With a notable
exception [22], these specifications are based on event structures, where all paths of
control flow are represented in a single graph. Figure 3 presents the event structure
for LB+false-dep. Program order is represented by arrows (). Conflict ()

PrideMM: Second Order Model Checking for Memory Consistency Models 5

links events where only one can occur in an execution (the same holds for their
program-order successors). For example, on the left-hand thread, the load of
x can result in a read of value 0 (event a) or a read of value 1 (event b), but
not both. Conversely, two subgraphs unrelated by program-order or conflict, e.g.
{a, b, c} and {d, e, f, g}, represent two threads in parallel execution.

It should be clear from the event structure in Figure 3 that regardless of the
value read from y in the right-hand thread, there is a write to x of value 1; that is,
the apparent dependency from the load of y is false and could be optimised away.
Memory specifications built above event structures can recognise this pattern
and permit relaxed execution.

The Jeffrey and Riely specification. J+R is built above event structures and
correctly identifies false dependencies [20]. Conceptually, the specification is
related to the Java memory specification [29]: in both, one constructs an execution
stepwise, adding only memory events that can be justified from the previous steps.
The sequence captures a causal order that prevents cycles with real dependencies.
While Java is too strong, J+R allows writes that have false dependencies on
a read to be justified before that read. To do this, the specification recognises
confluence in the program structure: regardless of the execution path, the write
will always be made. This search across execution paths involves an alternation
of quantification that current ad hoc and SAT-based tools cannot efficiently
simulate. However, the problem is amenable to QBF solvers.

2.2 Developing SC in SO Logic

The SC memory specification can be expressed as an axiomatic model [3] using
coherence order, a per-variable total order of write events. An execution is
allowed if there exists a reads-from relation rf and a coherence order co such
that the transitive closure of rf ∪ co ∪ (rf −1; co) ∪ po is acyclic. Here, po is
the (fixed) program-order relation, and it is understood that co and rf satisfy
certain further axioms. In our setting, we describe the sequentially consistent
specification as follows. We represent rf and co by existentially-quantified SO
arity-2 variables Yrf and Yco , respectively. For example, to say (x, y) ∈ co, we
use the formula Yco(x, y). The program order po is represented by an interpreted
arity-2 symbol <. Then, the SO formula that represents rf ∪ co ∪ (rf −1; co) ∪ po
is

R(y, z) := Yrf (y, z) ∨Yco(y, z) ∨ ∃x
(
Yrf (x, z) ∧Yco(x, y)

)
∨ (y < z)

The definition from above should be interpreted as a macro expansion rule: the
left-hand side R(y, z) is a combinator that expands to the formula on right-hand
side. To require that the transitive closure of R is acyclic we require that there
exists a relation that includes R, is transitive, and irreflexive:

∃Z
(
sub2(R, Z) ∧ trans(Z) ∧ irrefl(Z)

)

6 Authors Suppressed Due to Excessive Length

The combinators sub2, trans, irrefl are defined as one would expect. For example,
sub2(P,Q), which says that the arity-2 relation P is included in the arity-2
relation Q, is ∀xy

(
P (x, y)→ Q(x, y)

)
. In short, the translation from the usual

formulation of memory specifications into the SO logic encoding that we propose
is natural and almost automatic.

To represent programs and their behaviours uniformly for all memory speci-
fications in § 5, we use event structures. These have the ability to represent an
overlay of potential executions. Some memory specifications require reasoning
about several executions at the same time: this is a salient feature of the J+R
memory specification.

Once we have the program and its behaviour represented as a logic structure A
and the memory specification represented as a logic formula φ, we ask whether
the structure satisfies the formula, written A |= φ. In other words, we have to
solve a model-checking problem for second-order logic, which reduces to QBF
solving because the structure A is finite.

3 Preliminaries

To introduce the necessary notation, we recall some standard definitions [27]. A
(finite, relational) vocabulary σ is a finite collection of constant symbols (1, . . . , n)
together with a finite collection of relation symbols (q, r, . . .). A (finite, relational)
structure A over vocabulary σ is a tuple 〈A,Q,R, . . . 〉 where A = {1, . . . , n} is a
finite set called universe with several distinguished relations Q,R, . . . We assume
a countable set of first-order variables (x, y, . . .), and a countable set of second-
order variables (X, Y , . . .). A variable α is a first-order variable or a second-order
variable; a term t is a first-order variable or a constant symbol; a predicate P is a
second-order variable or a relation symbol. A (second-order) formula φ is defined
inductively: (a) if P is a predicate and t1, . . . , tk are terms, then P (t1, . . . , tk) is
a formula4; (b) if φ1 and φ2 are formulae, then φ1 ◦ φ2 is a formula, where ◦ is
a boolean connective; and (c) if α is a variable and φ is a formula, then ∃αφ
and ∀αφ are formulae. We assume the standard satisfaction relation |= between
structures and formulae.

The logic defined so far is known as relational SO. If we require that all
quantifiers over second-order variables are existentials, we obtain a fragment
known as ∃SO. For example, the SC specification of § 2.2 is in ∃SO.

The Model Checking Problem. Given a structure A and a formula φ, determine
if A |= φ. We assume that the relations of A are given by explicitly listing their
elements. The formula φ uses the syntax defined above.

Combinators. We will build formulae using the combinators defined below. This
simplifies the presentation, and directly corresponds to an API for building

4 we make the usual assumptions about arity

PrideMM: Second Order Model Checking for Memory Consistency Models 7

formulae within PrideMM.

subk(P k, Qk) := ∀x
(
P k(x)→ Qk(x)

)
id(x, y) := (x = y)

eqk(P k, Qk) := ∀x
(
P k(x)↔ Qk(x)

)
inv(P 2)(x, y) := P 2(y, x)

seq(P 2, Q2)(x, z) := ∃y
(
P 2(x, y) ∧Q2(y, z)

)
irrefl(P 2) := ∀x¬P 2(x, x)

inj(P 2) := sub2
(
seq(P 2, inv(P 2)), id

)
or(R,S)(x, y) := R(x, y) ∨ S(x, y)

trans(P 2) := sub2
(
seq(P 2, P 2), P 2

)
maybe(R)(x, y) := or(id,R)(x, y)

acyclic(P 2) := ∃X2
(
sub2(P 2, X2) ∧ trans(X2) ∧ irrefl(X2)

)

TC0(R) := eq1

TCn+1(R)(P 1, Q1) := eq1(P 1, Q1) ∨ ∃X1
(
R(P 1, X1) ∧ TCn(R)(X1, Q1)

)

By convention, all quantifiers that occur on the right-hand side of the definitions
above are over fresh variables. Above, P k and Qk are arity-k predicates, x and y
are first-order variables, and R and S are combinators.

Let us discuss two of the more interesting combinators: acyclic and TC. A
relation P is acyclic if it is included in a relation that is transitive and irreflexive.
We remark that the definition of acyclic is carefully chosen: even slight variations
can have a strong influence on the runtime of solvers [18]. The combinator TC for
bounded transitive closure is interesting for another reason: it is higher-order —
applying an argument (R) relation in each step of its expansion. By way of
example, let us illustrate its application to the subset combinator sub1.

TC1(sub1)(P,Q)

= eq1(P,Q) ∨ ∃X
(
sub1(P,X) ∧ TC0(sub1)(X,Q)

)

=

{
∀x1

(
P (x1)↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2)→ X(x2)

)
∧ eq1(X,Q)

)

=

{
∀x1

(
P (x1)↔ Q(x1)

)
∨

∃X
(
∀x2

(
P (x2)→ X(x2)

)
∧ ∀x3

(
X(x3)↔ Q(x3)

))

In the calculation above, P , Q and X have arity 1.

4 SO Solving through QBF

From a reasoning perspective, SO model-checking is a highly non-trivial task
due to quantifiers. In particular, quantifiers over relations, where the size of the
search-space alone is daunting. For a universe of size n there are 2n

2

possible

binary relations, and there are 2n
k

possible k-ary relations.5

A relation is uniquely characterised by a vector of Boolean values, each
determining whether a certain tuple is in the relation or not. This insight lets
us formulate a search for a relation as a SAT problem, where a fresh Boolean
variable is introduced for any potential tuple in the relation. Even though the
translation is exponential, it is a popular method in finite-model finding for
first-order logic formulae [13,38,33].

However, in the setting of SO, a SAT solver is insufficient since the input
formula may contain alternating quantifiers. We tackle this issue by translating

5 Finding constrained finite relations is NEXP-TIME complete [26].

8 Authors Suppressed Due to Excessive Length

to quantified Boolean formulae (QBF), rather than to plain SAT. The translation
is carried out in three stages.

1. each interpreted relation is in-lined as a disjunction of conjunctions over the
tuples where the relation holds;

2. first-order quantifiers are expanded into Boolean connectives over the elements
of the universe, i.e. ∀xφ leads to one conjunct for each element of the universe
and ∃xφ leads to one disjunct for each element of the universe;

3. all atoms now are ground and each atom is replaced by a fresh Boolean
variable, which is inserted under the same type of quantifier as the atom.

For illustration, consider the formula ∃X∀Y ∀z
(
Y (z) → X(z)

)
and the

universe A = {1, 2}. The formula requires a set X that is a superset of all
sets. Inevitably, X has to be the whole domain. The QBF formulation is
∃x1x2∀y1y2

(
(y1 → x1

)
∧
(
y2 → x2)

)
. Intuitively, rather than talking about a

set, we focus on each element separately, which is enabled by the finiteness of the
universe. Using QBF enables us to arbitrarily quantify over the sets’ elements.

PrideMM enables exporting the QBF formulation into the QCIR format [21],
which is supported by a bevy of QBF solvers. However, since most solvers only
support prenex form, PrideMM, also additionally prenexes the formula, where it
attempts to heuristically minimise the number of quantifier levels.

The experimental evaluation showed that the QFUN solver [17] performs the
best on the considered instances, see § 6. While the solver performs very well on
the J+R litmus tests, a couple of instances were left unsolved. Encouraged by the
success of QFUN, we built a dedicated solver that integrates the translation to
QBF and the solving itself. The solver represents the formula in dedicated hash-
consed data structures (the formulae grow in size considerably). The expansion of
first-order variables is done directly on these data structures while also simplifying
the formula on the go. The solver also directly supports non-prenex formulation
(see [19] for non-prenex QBF solving). The solver applies several preprocessing
techniques before expanding the first-order variables, such as elimination of
relations that appear only in positive or only in negative positions in the formula.

5 Memory Specification Encodings

In this section, we show that many memory specifications can be expressed
conveniently in second-order logic. We represent programs and their behaviours
with event structures: this supports the expression of axiomatic specifications
such as C++, but also the higher-order specification of J+R. For a given program,
its event structure is constructed in a straightforward way: loads give rise to
mutually conflicting read events and writes to write events [20]. We express the
constraints over event structures with the following vocabulary, shared across all
specifications.

Vocabulary. A memory specification decides if a program is allowed to have a
certain behaviour. We pose this as a model checking problem, A |= φ, where A

PrideMM: Second Order Model Checking for Memory Consistency Models 9

captures program behaviour and φ the memory specification. The vocabulary
of A consists of the following symbols:

– arity 1:read, write, final
– arity 2: ≤, conflict, justifies, sloc, =

Sets read and write classify read and write events. The symbol final, another
set of events, identifies the executions that exhibit final register states matching
the outcome specified by the litmus test.

Events x and y are in program order, written x ≤ y, if event x arises
from an earlier statement than y in the program text. We have conflict(x, y)
between events that cannot belong to the same execution; for example, a load
statement gives rise to an event for each value it might read, but an execution
chooses one particular value, and contains only the corresponding event. We
write justifies(x, y) when x is a read and y is a write to the same memory
location of the same value. We have sloc(x, y) when x and y access the same
memory location. Identity on events, { (x, x) | x ∈ A }, is denoted by =.

Configurations and Executions. We distinguish two types of sets of events. A
configuration is a set of events that contains no conflict and is downward closed
with respect to ≤; that is, X is a configuration when V(X) holds, where the
V combinator is defined by

V(X) :=





∀x∀y
((
X(x) ∧X(y)

)
→ ¬conflict(x, y)

)

∧ ∀y
(
X(y)→ ∀x

(
(x ≤ y)→ X(x)

))

We say that a configuration X is an execution of interest when every final
event is either in X or in conflict with an event in X; that is, X is an execution
of interest when F(X) holds, where the F combinator is defined by

F(X) := V(X) ∧ ∀x
((

final(x) ∧ ¬X(x)
)
→

∃y
(
conflict(x, y) ∧ final(y) ∧X(y)

)
)

Intuitively, we shall put in final all the maximal events (according to ≤) for
which registers have the desired values.

Notations. In the formulae below, X will stand for a configuration, which may be
the execution of interest. Variables Yrf , Yco , Yhb and so on are used to represent
the relations that are typically denoted by rf , co, hb, . . . Thus, X has arity 1,
while Yrf , Yco , Yhb , . . . have arity 2.

In what follows, we present four memory specifications: sequential consistency
(§ 5.1), release–acquire (§ 5.2), C++ (§ 5.3), and J+R (§ 5.4). The first three can
be expressed in ∃SO (and in first-order logic). The last one uses both universal
and existential quantification over sets. For each memory specification, we shall
see their encoding in second-order logic.

10 Authors Suppressed Due to Excessive Length

5.1 Sequential Consistency

The SC spectification allows all interleavings of threads, and nothing else. It is
described by the following SO sentence:

SC := ∃XYcoYrf

(
F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(R(Yco ,Yrf))

)

Intuitively, we say that there exists a coherence order relation Yco and a reads-
from relation Yrf which, when combined in a certain way, result in an acyclic
relation R(Yco ,Yrf). The formula co(X,Yco) says that Yco satisfies the usual
axioms of a coherence order with respect to the execution X; and the formula
rf(X,Yrf) says that Yrf satisfies the usual axioms of a reads-from relation with
respect to the execution X. Moreover, the formula F(X) asks that X is an
execution of interest, which results in registers having certain values.

co(X,Yco) :=





trans(Yco) ∧

∀xy
((
X(x) ∧X(y) ∧ write(x) ∧ write(y) ∧ sloc(x, y) ∧ (x 6= y)

)

↔
(
Yco(x, y) ∨Yco(y, x)

)
)

rf(X,Yrf) :=





inj(Yrf) ∧ sub2(Yrf , justifies) ∧

∀y
((

read(y) ∧X(y)
)
→ ∃x

(
write(x) ∧X(x) ∧Yrf (x, y)

))

When X is a potential execution and Yco is a potential coherence-order relation,
the formula co(X,Yco) requires that the writes in X for the same location include
some total order. Because of the later condition that R(Yco ,Yrf) is acyclic, Yco is
in fact required to be a total order per location. When X is a potential execution
and Yrf is a potential reads-from relation, the formula rf(X,Yrf) requires that
Yrf is injective, is a subset of justifies, and relates all the reads in X to some
write in X.

The auxiliary relation R(Yco ,Yrf) is the union of strict program-order (<),
reads-from (Yrf), coherence-order (Yco), and the from-reads relation:

R(Yco ,Yrf)(y, z) := (y < z) ∨Yco(y, z) ∨Yrf (y, z) ∨ ∃x
(
Yco(x, z) ∧Yrf (x, y)

)

5.2 Release–Acquire

Release–Acquire is a simple relaxed memory specification, which is represented
straightforwardly in SO logic. It is captured by the formula RA using the vocab-
ulary established in the definition of SC:

RA := ∃XYcoYrf




F(X) ∧ co(X,Yco) ∧ rf(X,Yrf) ∧ acyclic(Yco)

∧ ∃Yhb




sub2(<,Yhb) ∧ sub2(Yrf ,Yhb) ∧ trans(Yhb)

∧ irrefl(Yhb) ∧ irrefl(seq(Yco ,Yhb))

∧ irrefl(seq(inv(Yrf), seq(Yco ,Yhb)))







The existential SO variable Yhb over-approximates a relation traditionally called
happens-before.

PrideMM: Second Order Model Checking for Memory Consistency Models 11

5.3 C++

To capture the C++ specification in SO logic, we follow the Herd7 specification
of Lahav et al. [24]. Their work introduces necessary patches to the specification
of the standard [6] but also includes fixes and adjustments from prior work [4,23].
The specification is more nuanced than the SC and RA specifications and requires
additions to the vocabulary of A together with a reformulation for efficiency, but
the key difference is more fundamental. C++ is a catch-fire semantics: programs
that exhibit even a single execution with a data race are allowed to do anything —
satisfying every expected outcome. This difference is neatly expressed in SO
logic:

CPP := ∃XYcoYrf Yαβ

(
co(X,Yco) ∧ rf(X,Yrf) ∧ hb(Yαβ ,Yrf)

∧M(Yαβ ,Yco ,Yrf) ∧ (F(X) ∨ C(Yαβ ,Yrf))

)

The formula reuses co(X,Yco), rf(X,Yrf) and F(X) and includes three new
combinators: hb(Yαβ ,Yrf), M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). hb(Yαβ ,Yrf) con-
strains a new over-approximation, Yαβ , used for building a transitive relation.
M(Yαβ ,Yco ,Yrf) captures the conditions imposed on a valid C++ execution,
and is the analogue of the conditions applied in SC and RA. C(Yαβ ,Yrf) holds if
there is a race in the execution X. Note that the expected outcome is allowed
if F(X) is satisfied or if there is a race and C(Yαβ ,Yrf) is true, matching the
catch-fire semantics.

New vocabulary. C++ Read-modify-write operations load and store from memory
in a single atomic step: a new rmw relation links the corresponding reads and
writes. C++ fence operations introduce new events and the set fences identifies
them. The programmer annotates each memory access and fence with a memory
order parameter that sets the force of inter-thread synchronisation created by the
access. For each choice, we add a new set: na, rlx, acq, rel, acq-rel, and sc.

Over-approximation in happens before. The validity condition, M(Yαβ ,Yco ,Yrf),
and races C(Yαβ ,Yrf), hinge on a relation called happens-before. We over-
approximate transitive closures in the SO logic for efficiency, but Lahav et
al. [24] define happens-before with nested closures that do not perform well.
Instead we over-approximate a reformulation of happens-before that flattens the
nested closures into a single one (see Appendix A).

We define a combinator for happens-before, HB(Yαβ ,Yrf), that is used in
M(Yαβ ,Yco ,Yrf) and C(Yαβ ,Yrf). It takes as argument an over-approximation of
the closure internal to the reformed definition of happens-before, Yαβ . hb(Yαβ ,Yrf)
constrains Yαβ , requiring it to be transitive and to include the conjuncts of the

12 Authors Suppressed Due to Excessive Length

closure, α and β below.

HB(Yαβ ,Yrf) := or(<, seq(maybe(<), swbegin(Yrf),Yαβ , swend(Yrf),maybe(<)))

α(Yrf) := seq(swend(Yrf),maybe(<), swbegin(Yrf))

β(Yrf) := seq(Yrf , rmw)

hb(Yαβ ,Yrf) :=

{
trans(Yαβ)

∧ sub2(id,Yαβ) ∧ sub2(α(Yrf),Yαβ) ∧ sub2(β(Yrf),Yαβ)

5.4 Jeffrey–Riely

The J+R memory specification is captured by a sentence JRn, parametrised by
an integer n. Unlike the formulae we saw before, JRn makes use of three levels of
quantifiers (∃∀∃), putting it on the third level of the polynomial hierarchy. We
begin by lifting6 justifies from events to sets of events P and Q:

J(P,Q) := ∀y
((
¬P (y) ∧Q(y) ∧ read(y)

)

→ ∃x
(
P (x) ∧ write(y) ∧ justifies(x, y)

)
)

AJ(P,Q) := J(P,Q) ∧ sub1(P,Q) ∧ V(P) ∧ V(Q)

We read J as ‘justifies’, and AJ as ‘always justifies’. Next, we define what Jeffrey
and Riely call ‘always eventually justify’

AeJn(P,Q) :=





sub1(P,Q) ∧ V(P) ∧ V(Q) ∧
∀X

(
TCn(AJ)(P,X)→ ∃Y

(
TCn(AJ)(X,Y) ∧ J(Y,Q)

))

The size of the formula TCn(AeJm)(P,Q) we defined above isΘ(mn). In particular,
it is bounded. Finally, we let7

JRn := ∃X
(
TCn(AeJn)(∅, X) ∧ F(X)

)

and ask solve the model checking problem A |= JRn. Since the formulae above
are in MSO, it is sufficient to pick n := 2|A|. Since all bounded transitive closures
include the subset relation, they are monotonic, and it suffices, in fact, to pick
n := |A|. For actual solving, we will use this observation.

6 Evaluation

We evaluate our tool in the context of Herd7 [3], which is a standard tool among
memory specification researchers for building axiomatic memory specifications. No
similar tool exists for higher-order event structure based memory specifications.

6 Our definition of J is different from the original one [20]: we require that only new
reads are justified, by including the conjunct ¬P (y). Without this modification, our
solver’s results disagree with the hand-calculations reported by Jeffrey and Riely;
with this modification, the results agree.

7 The symbol ∅ denotes the empty unary relation, as expected.

PrideMM: Second Order Model Checking for Memory Consistency Models 13

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S
B

S
B

-8

S
B

-1
6

IR
IW

R
W

C

JC
TC

6

JC
TC

1
3

LB

M
P-

p
a
ss

M
P-

fa
il

JC
TC

1

JC
TC

2

JC
TC

3

JC
TC

4

JC
TC

5

JC
TC

6

JC
TC

7

JC
TC

8

JC
TC

9

JC
TC

1
0

PrideMM
Herd

J+R SpecificationC++ Specification

Fig. 4. Comparison of PrideMM’s performance in contrast to Herd7 [3].

6.1 Comparison to existing techniques

In figure Fig. 4 we compare the performance and capabilities of PrideMM to
Herd7, the de facto standard tool for building axiomatic memory specifications.
Herd7 and PrideMM were both executed on a machine equipped with an Intel
i5-5250u CPU and 16 GB of memory. We choose not to compare our tool to
MemSAT [39], as there are more memory specifications implemented for Herd7
in the CAT language [2] than there are for MemSAT.

Performance. Notably Herd7’s performance is very favourable in contrast to
the performance of PrideMM, however there are some caveats. The performance
of PrideMM is largely adequate, with most of the standard litmus tests taking
less than 2 seconds to execute. y ≤ 1s is highlighted on the chart. We find
that our QBF technique scales better than Herd7 with large programs. This is
demonstrated in the SB-16 test, a variant of the “store buffering” litmus test with
16 threads. The large number of combinations for quantifying the existentially
quantified relations which are explored näıvely by Herd7 cause it to take a
long time to complete. In contrast, smarter SAT techniques handle these larger
problems handily.

Expressiveness. We split the chart in figure Fig. 4 into 2 sections, the left-hand
side of the chart displays a representative subset of common litmus tests showing
PrideMM’s strength and weaknesses. These litmus tests are evaluated under
the C++ memory specification. Note that these include tests with behaviour
expected to be observable and unobservable, hence there being two MP bars.
The C++ memory specification is within the domain of memory specifications
that Herd7 can solve, as it requires only existentially quantified relations.

The right-hand half of the chart is the first 10 Java causality test cases run
under the J+R specification, which are no longer expressible in Herd7. PrideMM
solves these in reasonable time, with most tests solved in less than 10 minutes.

14 Authors Suppressed Due to Excessive Length

Prob. SAT caqe (s) qfun (s) qfm (s)
1 N ⊥ 610 2
2 N ⊥ 23 2
3 Y ⊥ ⊥ 222
4 Y ⊥ 2 5
5 Y ⊥ 78 51
6 N 5 4 1
7 Y ⊥ 280 56
8 N ⊥ 2 2
9 N ⊥ 2 1

Prob. SAT caqe (s) qfun (s) qfm (s)
10 Y ⊥ 36 10
11 Y ⊥ 598 335
13 Y 1 1 1
14 Y ⊥ 29 33
15 Y ⊥ 512 157
16 N ⊥ ⊥ 12
17 N ⊥ 39 311
18 N ⊥ 359 190
#17 #2 #15 #17

Fig. 5. Solver approaches for PrideMM on Java Causality Test Cases. ⊥ represents
timeout or mem-out.

Our J+R tests replicate the results found in the original paper, but where they
use laborious manual proof in the Agda proof assistant, PrideMM validates the
results automatically.

6.2 QBF vs SO Solver Performance

PrideMM enables emitting the SO logic formulae and structures directly for
the SO solver, or we can convert to a QBF query (see § 4). This allows us to
use our SO solver as well as QBF solvers. We find that the SO solver affords
us a performance advantage over the QBF solver in most of the Java causality
test cases, where performance optimisations for alternating quantification are
applicable.

We include the performance of the QBF solvers CAQE and QFUN, the
respective winners of the CNF and non-CNF tracks at 2017’s QBFEVAL compe-
tition [32]. Our QBF benchmarks were first produced in the circuit-like format
QCIR [21], natively supported by QFUN. The inputs to CAQE were produced
by converting to CNF through standard means, followed by a preprocessing step
with Bloqqer [7].

We can also emit the structures and formulae as an Isabelle/HOL file, which
can then be loaded into Nitpick [8] conveniently. We found that Nitpick cannot
be run over the C++ specification or the J+R specification, timing out after 1 hr
on all the litmus tests.

7 Related Work

We build on prior work from two different areas — relaxed memory specifications,
and SAT/QBF solving: the LISA frontend comes from the Herd7 memory-
specification simulator [3], the MSGs implement memory specifications that have
been previously proposed [24,20], and the SO solver is based on a state-of-the-art
QBF solver [17].

There is a large body of work on finite relational model finding in the context
of memory specifications using Alloy [16]. Alloy has been used to compare memory
specifications and find litmus tests which can distinguish two specifications [40],
and has been used to synthesise comprehensive sets of tests for a specific memory

PrideMM: Second Order Model Checking for Memory Consistency Models 15

specification [28]. Applying SAT technology in the domain of evaluating memory
specifications has been tried before, too. MemSAT [39] uses Kodkod [38], the
same tool that Alloy relies on to do relational model finding. MemSynth [10]
uses Ocelot [9] to embed relational logic into the Rosette [37] language. Our
results are consistent with the findings of MemSAT and MemSynth: SAT appears
to be a scalable and fast way to evaluate large memory specification questions.
Despite this, SAT does not widen the class of specifications that can be efficiently
simulated beyond ad hoc techniques.

There is work to produce a version of Alloy which can model higher-order
constructions, called Alloy* [30], however this is limited in that each higher order
set requires a new signature in the universe to represent it. Exponential expansion
of the sets quantified in the J+R specification leaves model finding for J+R
executions intractable in Alloy* too.

While Nitpick [8] can model higher order constructions, we found it could not
generate counter examples in a reasonable length of time of the specifications
we built. There is work to build a successor to Nitpick called Nunchaku [34],
however, at present Nunchaku does not support higher order quantification. Once
Nunchaku is more complete we intend to output to Nunchaku and evaluate its
performance in comparison to our SO solver.

There is a bevy of work on finite model finding in various domains. SAT is a
popular method for finite model finding in first-order logic formulae [13,33]. There
are constraint satisfaction-based model finders, e.g. the SEM model finder [42],
relying on dedicated symmetry and propagation. Reynolds et al. propose solutions
for finite model finding in the context of SMT [35,36] (CVC4 is in fact used as
backend to Nunchaku).

8 Conclusion

This paper presents PrideMM, a case study of the application of new solving
techniques to a problem domain with active research. PrideMM allows memory
specification researchers to build a new class of memory specifications with
richer quantification, and still automatically evaluate these specifications over
programs. In this sense we provide a Herd7-style modify-execute-evaluate pattern
of development for higher-order memory specifications that were previously
unsuitable for mechanised model finding.

16 Authors Suppressed Due to Excessive Length

References

1. Alglave, J., Cousot, P.: Syntax and analytic semantics of LISA. https://arxiv.
org/abs/1608.06583 (2016)

2. Alglave, J., Cousot, P., Maranget, L.: Syntax and analytic semantics of the weak con-
sistency model specification language CAT. https://arxiv.org/abs/1608.07531
(2016)

3. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752, http://doi.acm.org/10.
1145/2627752

4. Batty, M., Donaldson, A.F., Wickerson, J.: Overhauling SC atomics in C11 and
opencl. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 634–648 (2016). https://doi.org/10.1145/2837614.2837637,
http://doi.acm.org/10.1145/2837614.2837637

5. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The
problem of programming language concurrency semantics. In: Programming Lan-
guages and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. pp. 283–307
(2015). https://doi.org/10.1007/978-3-662-46669-8 12, https://doi.org/10.1007/
978-3-662-46669-8_12

6. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++
concurrency. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011. pp. 55–66 (2011). https://doi.org/10.1145/1926385.1926394, http:

//doi.acm.org/10.1145/1926385.1926394

7. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: The 23rd
International Conference on Automated Deduction CADE (2011)

8. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
Interactive Theorem Proving. pp. 131–146. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010). https://doi.org/https://doi.org/10.1007/978-3-642-14052-5 11

9. Bornholt, J., Torlak, E.: Ocelot: A solver-aided relational logic DSL (2017), https:
//ocelot.memsynth.org/

10. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. pp. 467–481 (2017). https://doi.org/10.1145/3062341.3062353,
http://doi.acm.org/10.1145/3062341.3062353

11. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda - A functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings. Lecture Notes in Com-
puter Science, vol. 5674, pp. 73–78. Springer (2009). https://doi.org/10.1007/978-3-
642-03359-9 6, https://doi.org/10.1007/978-3-642-03359-9_6

12. Chakraborty, S., Vafeiadis, V.: Grounding thin-air reads with event structures.
PACMPL 3(POPL), 70:1–70:28 (2019), https://dl.acm.org/citation.cfm?id=
3290383

PrideMM: Second Order Model Checking for Memory Consistency Models 17

13. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Principles,
Algorithms, Applications (2003)

14. Gray, K.E., Kerneis, G., Mulligan, D.P., Pulte, C., Sarkar, S., Sewell, P.: An
integrated concurrency and core-isa architectural envelope definition, and test
oracle, for IBM POWER multiprocessors. In: Proceedings of the 48th International
Symposium on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December
5-9, 2015. pp. 635–646 (2015). https://doi.org/10.1145/2830772.2830775, http:

//doi.acm.org/10.1145/2830772.2830775
15. ISO/IEC: Programming languages – C++. Draft N3092 (March 2010), http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3092.pdf
16. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Trans. Softw.

Eng. Methodol. 11(2), 256–290 (Apr 2002). https://doi.org/10.1145/505145.505149,
http://doi.acm.org/10.1145/505145.505149

17. Janota, M.: Towards generalization in QBF solving via machine learning. In: AAAI
Conference on Artificial Intelligence (2018)

18. Janota, M., Grigore, R., Manquinho, V.: On the quest for an acyclic graph. In:
RCRA (2017)

19. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with
counterexample guided refinement. Artificial Intelligence 234, 1–25 (2016).
https://doi.org/http://dx.doi.org/10.1016/j.artint.2016.01.004

20. Jeffrey, A., Riely, J.: On thin air reads towards an event structures model of
relaxed memory. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science. pp. 759–767. LICS ’16, ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2933575.2934536, http://doi.acm.org/10.1145/
2933575.2934536

21. Jordan, C., Klieber, W., Seidl, M.: Non-CNF QBF solving with QCIR. In: AAAI
Workshop: Beyond NP. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

22. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. pp. 175–189 (2017), http://dl.acm.org/citation.cfm?id=
3009850

23. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016. pp. 649–662 (2016). https://doi.org/10.1145/2837614.2837643,
http://doi.acm.org/10.1145/2837614.2837643

24. Lahav, O., Vafeiadis, V., Kang, J., Hur, C., Dreyer, D.: Repairing sequential
consistency in C/C++11. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017. pp. 618–632 (2017). https://doi.org/10.1145/3062341.3062352,
http://doi.acm.org/10.1145/3062341.3062352

25. Lamport, L.: How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979).
https://doi.org/10.1109/TC.1979.1675439, https://doi.org/10.1109/TC.1979.

1675439
26. Lewis, H.R.: Complexity results for classes of quantificational for-

mulas. Journal of Computer and System Sciences 21(3), 317–353
(1980). https://doi.org/https://doi.org/10.1016/0022-0000(80)90027-6,
http://www.sciencedirect.com/science/article/pii/0022000080900276

18 Authors Suppressed Due to Excessive Length

27. Libkin, L.: Elements of Finite Model Theory. Springer (2004)

28. Lustig, D., Wright, A., Papakonstantinou, A., Giroux, O.: Automated synthe-
sis of comprehensive memory model litmus test suites. In: Proceedings of the
Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems. pp. 661–675. ASPLOS ’17, ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3037697.3037723, http:

//doi.acm.org/10.1145/3037697.3037723

29. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005. pp.
378–391 (2005). https://doi.org/10.1145/1040305.1040336

30. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: ICSE (2015)

31. Pichon-Pharabod, J., Sewell, P.: A concurrency semantics for relaxed atomics
that permits optimisation and avoids thin-air executions. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp.
622–633 (2016). https://doi.org/10.1145/2837614.2837616

32. QBF Eval 2017, http://www.qbflib.org/event_page.php?year=2017

33. Reger, G., Suda, M., Voronkov, A.: Finding finite models in multi-sorted first-order
logic. In: Creignou, N., Berre, D.L. (eds.) Theory and Applications of Satisfiability
Testing - SAT. Lecture Notes in Computer Science, vol. 9710, pp. 323–341. Springer
(2016). https://doi.org/10.1007/978-3-319-40970-2 20

34. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Automated Reasoning - 8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings. pp. 133–151
(2016). https://doi.org/10.1007/978-3-319-40229-1 10

35. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in
SMT. In: Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. pp. 640–655
(2013). https://doi.org/10.1007/978-3-642-39799-8 42, https://doi.org/10.1007/
978-3-642-39799-8_42

36. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
Automated Deduction - CADE-24 - 24th International Conference on Automated De-
duction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 7898, pp. 377–391. Springer (2013). https://doi.org/10.1007/978-
3-642-38574-2 26, https://doi.org/10.1007/978-3-642-38574-2_26

37. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 530–541. PLDI ’14, ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2594291.2594340, http://doi.acm.org/
10.1145/2594291.2594340

38. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth,
M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,
March 24 - April 1, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4424,
pp. 632–647. Springer (2007). https://doi.org/10.1007/978-3-540-71209-1 49

PrideMM: Second Order Model Checking for Memory Consistency Models 19

39. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: Checking axiomatic specifications
of memory models. In: Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 341–350. PLDI ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1806596.1806635

40. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically compar-
ing memory consistency models. In: Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 190–204 (2017), http://dl.acm.org/citation.cfm?id=3009838

41. Winskel, G.: Event structures, pp. 325–392. Springer Berlin Heidelberg, Berlin,
Heidelberg (1987). https://doi.org/10.1007/3-540-17906-2 31

42. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI.
pp. 298–303. Morgan Kaufmann (1995), http://ijcai.org/Proceedings/95-1/
Papers/039.pdf

20 Authors Suppressed Due to Excessive Length

Appendix A Reformulation of happens before

Lahav et al. [24] define happens before, hb, in terms of sequenced before sb, the
C++ name for program order, and synchronises with, sw, inter-thread synchroni-
sation. Their rf and rmw relations match Yrf and rmw in our vocabulary. Fixed
sequences of memory events initiate and conclude synchronisation, and these
are captured by swbegin and swend. In the definition below, semicolon represents
forward relation composition.

sw := swbegin; (rf; rmw)∗; swend

hb := (sb ∪ sw)+

For efficiency we over-approximate transitive closures in the SO logic, but
the nesting over-approximation that follows from the structure of hb does not
perform well. Instead we over-approximate a reformulation of hb.

hb’ := sb ∪ (sb?; swbegin ; ((swend ; sb?; swbegin)) ∪ (rf; rmw))∗; swend ; sb?)

By unpacking the definition of sw, the reformulation flattens the nested
closures into a single one. The closure combines fragments of happens before
where at the start and end of the fragment, a synchronisation edge has been
initiated but not concluded. Within the closure, the synchronisation edge can be
concluded and a new one opened, or some number of read-modify-writes can be
chained together with rf.

We explain the definition of hb’ by considering the number of sw edges that
consitute a particular hb edge. If a hb edge contains no sw edge, then because
sb is transitive, the hb edge must be a single sb edge. Otherwise, the hb edge is
made up of a sequence of one or more sw edges with sb edges before, between
and after some of the sw edges. The first sw edge is itself a sequence of edges
starting with swbegin. This is followed by any number of rf; rmw edges. At the
end of the sw edge there are two possibilities: this edge was the final sw edge,
or there is another in the sequence to be initiated next. The first conjunct of
the closure, swend ; sb?; swbegin captures the closing and opening of sw edges, the
second captures the chaining of read-modify-writes. The end of the definition
closes the final sw edge with swend .

fkcc: the Farkas Calculator

Christophe Alias

CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon
Christophe.Alias@ens-lyon.fr

http://foobar.ens-lyon.fr/fkcc

Abstract. In this paper, we present fkcc, a scripting tool to prototype
quickly program analysis and transformation exploiting the affine form
of Farkas lemma. Our language is general enough to prototype in a few
lines sophisticated termination and scheduling algorithms. The tool is
freely avalailable and may be tried online via a web interface. We believe
that fkcc is the missing chain to accelerate the development of program
analysis and transformations exploiting the affine form of Farkas lemma.

Keywords: Farkas lemma · Scripting tool · Termination · Scheduling.

1 Introduction

Several program analysis and transformation requires to handle conjunction of
affine constraints C and C ′ with a universal quantification as ∀x |= C : C ′. For
instance, this appears in loop scheduling [6, 7], loop tiling [2], program termina-
tion [1] and generation of invariants [3]. Farkas lemma – affine form – provides
a way to get rid of that universal quantification, at the price of introducing
quadratic terms. In the context of program termination and loop scheduling, it
is even possible to use Farkas lemma to turn universally quantified quadratic
constraints into existantially quantified affine constraints. This requires tricky
algebraic manipulations, not easy to applied by hand, neither to implement.

In this paper, we propose a scripting tool, fkcc, which makes possible to
manipulate easily Farkas lemma to benefit from those nice properties. More
specifically, we made the following contributions:

– A general formulation for the resolution of equations S(x) = 0 where S is
summation of affine forms including Farkas terms. So far, this resolution was
applied for specific instances of Farkas summation. Though that generaliza-
tion is easy to find, it provides the basis of the fkcc scripting language.

– A scripting language to apply and exploit Farkas lemma; among polyhedra,
affine functions and affine forms.

– Our tool, fkcc, implementing these principles, available at http://foobar.ens-
lyon.fr/fkcc. fkcc may be download and tried online via a web interface.
fkcc comes with many examples, making possible to learn the tool quickly.

This paper is structured as follows. Section 2 presents the affine form of
Farkas, our resolution theorem, and explains how it applies to compute schedul-
ing functions. Then, Section 3 define the syntax outlines informally the semantics

2 C. Alias

of the fkcc language. Section 4 presents two complete use-cases of fkcc. Finally,
Section 5 concludes this paper and draws future research perspectives.

2 Farkas Lemma in Program Analysis and Compilation

This section presents the theoretical background of this paper. we first introduce
the affine form of Farkas lemma. Then, we present our theorem to solve equations
S(x) = 0 where S is s summation including Farkas terms. This formalization
will then be exploited to design the fkcc language.

Lemma 1 (Farkas Lemma, affine form). Consider a convex polyhedron P =
{x, Ax + b ≥ 0} ⊆ IRn and an affine form φ : IRn → IR such that φ(x) ≥
0 ∀x ∈ P.
Then: ∃λ ≥ 0, λ0 ≥ 0 such that:

φ(x) = tλ(Ax+ b) + λ0 ∀x

Hence, Farkas lemma makes possible to remove the quantification ∀x ∈ P by
encoding directly the positivity over P into the definition of φ, thanks to the
Farkas multipliers λ and λ0. In the remainder, Farkas terms will be denoted
by: F(λ0,λ, A, b)(x) = tλ(Ax + b) + λ0. We now propose a theorem to solve
equations S(x) = 0 where S involves Farkas terms. The result is expressed as a
conjunction of affine constraints, which is suited for integer linear programming:

Theorem 1. Consider a summation S(x) = u ·x+ v+
∑
i F(λi0,λi, Ai, bi)(x)

of affine forms, including Farkas terms. Then:

∀x : S(x) = 0 iff

{
u+

∑
i
tAiλi = 0 ∧

v +
∑
i (λi · bi + λ0i) = 0

Proof. We have:

S(x) = tx

(∑

i

tAiλi

)
+
∑

i

(λi · bi + λ0i) + u · x+ v

= tx

(
u+

∑

i

tAiλi

)
+ v +

∑

i

(λi · bi + λ0i)

S(x) = τ · x+ τ0 = 0 for any x iff τ = 0 and τ0 = 0. Hence the result. ut

Application to scheduling Consider the polynomial product kernel depicted in
Figure 3.(a). Farkas lemma and Theorem 1 may be applied to compute a sched-
ule, this is a way to reorganize the computation of the program to fulfill various
criteria (overall latency, locality, parallelism, etc). On this example, a sched-
ule may be expressed as an affine form θ : (i, j) 7→ t assigning a timestamp
t ∈ ZZ to each iteration (i, j). This way, a schedule prescribes an execution or-
der ≺θ := {((i, j), (i′, j′)) | θ(i, j) < θ(i′, j′)}. Figure 3.(b) illustrates the order

fkcc: the Farkas Calculator 3

prescribed by the schedule θ(i, j) = i: a sequence of vertical wave fronts, whose
iterations are executed in parallel.

A schedule must be positive everywhere on the set of iteration vectors DN =
{(i, j) | A t(i, j,N) + b} (referred to as iteration domain). In general, the itera-
tions domains are parametrized (typically by the array size N) and the schedule
may depends on N . Hence we have to consider vectors (i, j,N) instead of (i, j):

θ(i, j,N) ≥ 0 ∀(i, j) ∈ DN (1)

Applying Farkas lemma, this translates to:

∃λ0 ≥ 0,λ ≥ 0 such that θ(i, j,N) = F(λ0,λ, A, b)(i, j,N) (2)

Moreover, a schedule must satisfy the data dependences (i, j) → (i′, j′). → is
generally expressed as a Presburger relation [8], in turned abstracted as a rational
convex polyhedron ∆N containing the correct vectors (i, j, i′, j′) and sometimes
false positives. Here again, ∆N = {(i, j, i′, j′) | C t(i, j, i′, j′, N) + d ≥ 0} is
parametrized by structure parameter N . This way, the correctness condition
translates to:

θ(i′, j′, N) > θ(i, j,N) ∀(i, j, i′, j′) ∈ ∆N (3)

Note that θ(i′, j′, N) > θ(i, j,N) is equivalently written as the positivity of an
affine form over a convex polyhedron: θ(i′, j′, N) − θ(i, j,N) − 1 ≥ 0. Applying
Farkas lemma:

∃µ0 ≥ 0,µ ≥ 0 such that θ(i′, j′, N)−θ(i, j,N)−1 = F(µ0,µ, C,d)(i, j, i′, j′, N)

Substituting θ using Equation (2), this translates to S(i, j, i′, j′, N) = 0, where
S(i, j, i′, j′, N) is defined as the summation:

F(λ0,λ, A, b)(i
′, j′, N)− F(λ0,λ, A, b)(i, j,N)− F(µ0,µ, C,d)(i, j, i′, j′, N)− 1

Since −F(λ0,λ, A, b) = F(−λ0,−λ, A,−b), we may apply theorem 1 to obtain
a system of affine constraints with λ0,λ, µ0,µ. Linear programming may then
be applied to find out the desired schedule [2, 7]. The same principle might be
applied in termination analysis to derive a ranking function [1], this will be
developed in Section 4.

3 Language

This section specifies the input language of fkcc and outlines informally its
semantics. Figure 1 depicts the input syntax of fkcc. Keywords and syntax
sugar are written with verbatim letters, identifiers with italic letter and syntactic
categories with roman letters. Among identifiers, p is a parameter, v is a variable
(typically a loop counter) and id is an fkcc identifier.

4 C. Alias

program ::= (parameters = { p, ..., p };)? instruction; ...; instruction;

instruction ::= object | id := object | lexmin polyhedron | lexmax polyhedron | set id

object ::= polyhedron | affine form | affine function

polyhedron ::=
[p, ..., p] -> { [v, ..., v] : inequation and ... and inequation }
| polyhedron * ... * polyhedron
| solve affine form = 0

| define affine form with v
| keep v, ..., v in polyhedron
| find id, ..., id s.t. affine form = 0

affine form ::= leaf affine form | leaf affine form [+-] ... [+-] leaf affine form

leaf affine form ::=
{ [v, ..., v] -> expression }
| positive on polyhedron
| leaf affine form . affine function
| int
| int * leaf affine form

affine function ::= { [v, ..., v] -> [expression, ..., expression] }

Fig. 1. fkcc syntax

fkcc: the Farkas Calculator 5

Program, instructions, polyhedra An fkcc program consists of a sequence of in-
structions. There is no other control structure than the sequence. An instruction
may assign an fkcc object (polyhedron, affine form or affine function) to an
fkcc identifier, or may be an fkcc object alone. In the latter, the fkcc object
is streamed out to the standard output. Also, we often need to compute the
lexicographic optimum of a polyhedron, typically to pick an optimal schedule.
fkcc uses parameteric integer linear programming [5] via the Piplib library. The
result is a discussion on the parameter value:

parameters := {N};

lexmin [N] -> {[i,j]: 0 <= i and i <= N and 0 <= j and j <= N};

would give:

if(N >= 0)

{

[] -> {[0,0]}

}

else

{

(no solution)

}

;

Note that structure parameters must be declared with the parameters con-
struct. When no parameters are involved, the parameters construct may be
omitted. The ensure the compatibility with iscc syntax, the parameters of a
polyhedron may be declared on preceding brackets [N] -> This is purely
optional: fkcc actually does not analyze this part. The instruction set id emits
id := to the standard output. This makes possible to generate iscc scripts for
further analysis. Finally, the set intersection of two polyhedra P and Q is obtained
with P*Q.

Affine forms An affine form may be defined as a Farkas term:

iterations := [] -> {[i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

theta := positive_on iterations;

If iterations is {x | Ax + b ≥ 0}, then theta is defined as F(λ0,λ, A, b)
where λ0 and λ are fresh positive variables. In that case, the polyhedron is never
parametrized: the parameters must be handled as variables. In particular, do not
name variables with identifiers declared as parameters with parameters :=, as
they would be treated as parameters whatever the context. Affine forms might
be summed, scaled and composed with affine functions, typically to adjust the
input dimension:

to_target := {[i,j,i’,j’,N]->[i,j,N]};

to_source := {[i,j,i’,j’,N]->[i’,j’,N]};

sum := theta.to_target - 2*theta.to_source + 1 + {[i,j,i’,j’,N] -> 2*i-i’};

6 C. Alias

In a summation of affine forms, affine forms must have the same input di-
mension. Also, a constant (1) is automatically interpreted as an affine form
([i,j,i’,j’,N] -> 1). Affine forms may also be stated explicitely ({[i,j,i’,j’,N]
-> 2*i-i’}). The terms of the summation are simply separated with + and -,
no parenthesis are allowed.

Resolution The main feature of fkcc is the resolution of equations S(x) = 0
where S is a summation of affine forms including Farkas terms. This is obtained
with the instruction solve:

solve sum = 0;

The result is a polyhedron with Farkas multipliers (obtained after applying
theorem 1):

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4] :
(2+lambda_0)+(-1*lambda_1) >= 0 and (-2+(-1*lambda_0))+lambda_1 >= 0 and
lambda_2+(-1*lambda_3) >= 0 and (-1*lambda_2)+lambda_3 >= 0 and
(-1*lambda_1)+(-1*lambda_3) >= 0 and lambda_1+lambda_3 >= 0 and
(-1+(-2*lambda_0))+(2*lambda_1) >= 0 and (1+(2*lambda_0))+(-2*lambda_1) >= 0 and
(-2*lambda_2)+(2*lambda_3) >= 0 and (2*lambda_2)+(-2*lambda_3) >= 0 and
1+(-1*lambda_4) >= 0 and -1+lambda_4 >= 0 and lambda_4 >= 0 and
lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0 and
lambda_4 >= 0 and lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0};

At this point, we need to recover the coefficients of our affine form theta in
terms of λ (lambda 0,lambda 1,lambda 2,lambda 3) and λ0 (lambda 4). Ob-
serve that theta(x) = F(λ0,λ, A, b)(x) = tλAx+ λ · b+ λ0. If the coefficients
of theta are written: theta(x) = τ · x + τ0, we simply have: τ = tλA and
τ0 = λ · b+ λ0. This is obtained with define:

define theta with tau;

The result is a conjunction of definition equalities, gathered in a polyhedron:

[] -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4,tau_0,tau_1,tau_2,tau_3] :
((-1*lambda_0)+lambda_1)+tau_0 >= 0 and (lambda_0+(-1*lambda_1))+(-1*tau_0) >= 0 and
((-1*lambda_2)+lambda_3)+tau_1 >= 0 and (lambda_2+(-1*lambda_3))+(-1*tau_1) >= 0 and
((-1*lambda_1)+(-1*lambda_3))+tau_2 >= 0 and (lambda_1+lambda_3)+(-1*tau_2) >= 0 and
(-1*lambda_4)+tau_3 >= 0 and lambda_4+(-1*tau_3) >= 0};

The first coefficients tau k define τ , the last one defines the constant τ0. On
our example, theta(i,j,N) = tau 0*i + tau 1*j + tau 2*N + tau 3. Now
we may gather the results and eliminate the λ to keep only τ and τ0:

keep tau_0,tau_1,tau_2,tau_3 in ((solve sum = 0)*(define theta with tau));

The result is a polyhedron with the solutions. Here, there are no solutions:
the result is an empty polyhedron. All these steps may be applied once with the
find command:

find theta s.t. sum = 0;

The coefficients are automatically named theta 0, theta 1, etc with the
same convention as define. We point out that define choose fresh names for
coeffients (e.g. tau 4, tau 5 on the second time with ‘‘tau’’) whereas find
always choose the same names. Hence find would be prefered when deriving
separately constraints on the same coefficients of theta. find may filter the
coefficients for several affine forms expressed as Farkas terms in a summation:

fkcc: the Farkas Calculator 7

find theta_S,theta_T s.t.

theta_T.to_target - theta_S.to_source - 1

- (positive_on dependences_from_S_to_T) = 0;

This is typically used to compute schedules for programs with multiple as-
signments (here S and T with dependence from iterations of S to iterations
of T). Finally, note that keep tau 0,tau 1,tau 2,tau 3 in P; projects P on
variables tau 0,tau 1,tau 2,tau 3: the result is a polyhedron with integral
points of coordinates (tau 0,tau 1,tau 2,tau 3). This way, the order in which
tau 0,tau 1,tau 2,tau 3 are specified to keep impacts directly a further lexi-
cographic optimization.

4 Examples

This section show how fkcc might be used to specify in a few lines termination
analysis and loop scheduling.

4.1 Termination analysis

assert x0 > 0 ∧ y0 > 0
x := x0; y := y0;
while x 6= y
if x > y
then x := x− y;
else y := y − x;

start

loop

stop

•
x′:=x0,y′:=y0

x=y
•

x>y
x′:=x−y

y>x
y′:=y−x

Istart = {x0 > 0 ∧ y0 > 0}
Iloop = {x > 0 ∧ y > 0 ∧ x ≤ x0 ∧ y ≤ y0}
Istop = {x ≤ y0 ∧ x ≤ x0 ∧ x > 0 ∧ x = y}

ρstart(x, y) = (2)
ρloop(x, y) = (1, x+ y − 2)
ρstop(x, y) = (0)

(a) Kernel (b) Affine automaton
(c) Invariants and

ranking

Fig. 2. Termination example

Consider the example depicted on Figure 2. The program computes the gcd of
two integers x0 and y0 (a). It is translated to an affine automaton (b) (also called
integer interpreted automaton), in turn analysed to check the termination (c):
does the program terminates for any input (x0, y0) satisfying the precondition
x0 > 0 ∧ y0 > 0?

This problem is – as most topics in static analysis – undecidable in general.
However, we may conclude when it is possible to derive statically an abstrac-
tion precise enough of the program execution. In [1], we provide a termina-
tion algorithm based on the computation of a ranking. A ranking is an applica-
tion ρlabel : ZZn → (R,≺) which maps each reachable state of the automaton

8 C. Alias

〈label,x〉 to a rank belonging to well-founded set. On our example a reachable
state could be 〈loop, (x : 3, y : 3, x0 : 3, y0 : 6)〉 after firing the initial transition
and the right transition.

The ranking is decreasing on the transitions: for any transition 〈label,x〉 →
〈label′,x′〉, we have: ρlabel’(x

′) ≺ ρlabel(x). Since ranks belong to a well founded
set, there are – by definition – no infinite decreasing chain of ranks. Hence infinite
chains of transitions from an initial state never happen.

On [1], we provide a general method for computing a ranking of an affine
automata. Our ranking is affine per label: ρlabel(x) = Alabelx + blabel ∈ INp.
Figure 2.(c) depicts the ranking found on the example. Ranks ordered with the
lexicographic ordering �, the well-founded set is (INp,�). This means that, by
decreasing order, start comes first (2), then all the iterations of loop (1), and
finally stop (0). The transitions involved to compute those constants are the
transitions from start to loop and the transitions from loop to stop. Then,
transitions from loop to loop (left, denoted τ1 and right, denoted τ2) are used
to computed the second dimension of ρloop. In the remainder, we will focus on
the computation of the second dimension of ρloop (x+ y− 2) from transitions τ1
and τ2. We will write ρloop(x) for ρloop(x)[1] to simplify the presentation.

Positivity on reachable states The ranking must be positive on reachable states
of loop. The set of x such that 〈loop,x〉 is reachable from an initial state is
called the accessibility set of loop. In general, we cannot compute it – this is
the undecidable part of the analysis. Rather, we compute an over-approximation
thanks to linear relation analysis [4, 9]. This set is called an invariant and will
be denoted by Iloop. Figure 2.(c) depicts the invariants on the program. All
the challenge is to make the invariant close enough to the accessibility set so
a ranking can be computed. In fkcc, the assertion x |= Iloop ⇒ ρloop(x) ≥ 0
translates to:

I_loop := [] -> {[x,y,x0,y0]: x>0 and y>0 and x <= x0 and y <= y0};

rank := positive_on I_loop;

Decreasing on transitions Now it remains to find a ranking decreasing on tran-
sitions τ1 and τ2. We first consider τ1. The assertation x |= Iloop ∧ x > y ⇒
ρloop(x− y, x, x0, y0) < ρloop(x, y, x0, y0) translates to:

tau1 := [] -> {[x,y,x0,y0]: x>y};

s1 := find rank s.t. rank - (rank . {[x,y,x0,y0]->[x-y,y,x0,y0]}) - 1

- positive_on (tau1*I_loop) = 0;

Similarly we compute a solution set s2 from τ2 and Iloop. Finally, the ranking
is found with the instruction lexmin (s1*s2);, which outputs the result:

[] -> {[1,1,0,0,-2]};

This corresponds to the dimension x+ y − 2.

fkcc: the Farkas Calculator 9

for i := 0 to N
for j := 0 to N

c[i+j] := c[i+j] + a[i]*b[j];

i

j

0

1

2

N = 3

0 1 2 3

θ(i, j,N) = i

(a) Product of polynomials (b) Iterations and schedule

Fig. 3. Scheduling example

4.2 Scheduling

Figure 3 depicts an example of program (a) computing the product of two poly-
nomials specified by their array of coefficients a and b, and the iteration domain
with the data dependence across iterations (b) and an example schedule θ pre-
scribing a parallel execution by vertical waves, as discussed in Section 2.

Positivity Similarly to the ranking, the positivity condition (1) translates to:

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

dependence := [] -> { [i,j,i’,j’,N]: 0 <= i and i <= N and 0 <= j and

j <= N and 0 <= i’ and i’ <= N and 0 <= j’ and

j’ <= N and i+j = i’+j’ and i<i’};

theta(i,j,N) >= 0 for any iteration (i,j,N)

theta := positive_on iterations;

Correctness We enhance the correctness condition (2) by making possible to se-
lect the dependence to satisfy. For each dependence class d, we use a 0-1 variable
εd. Here we have a single dependence class from S to S, so have only one 0-1
variable ε:

θ(i′, j′, N) ≥ θ(i, j,N) + ε ∀(i, j, i′, j′) ∈ ∆N

On the ranking example, we would have four classes (i = start→ loop, τ1, τ2, e =
loop → stop). This makes possible to choose which dependence class is satified
(εd = 1) or just respected (εd = 0). This is the way multidimensional schedules
are built [7]: on the termination example we would have εi = εe = 1, ετ1 = ετ2 = 0
for the first dimension, then ετ1 = ετ2 = 1 for the second dimension. Here it is
kind of artificial, since we have a single dependence. However, the presentation
generalizes easily to several dependence classes. This translates as:

parameters := {inv_eps,eps};

10 C. Alias

to_target := {[i,j,i’,j’,N]->[i’,j’,N]};

to_source := {[i,j,i’,j’,N]->[i,j,N]};

s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <= 1

theta_correct := solve (theta . to_target) - (theta . to_source)

+ {[i,j,i’,j’,N] -> -1*eps}

- (positive_on dependence) = 0;

theta_def := define theta with theta;

eps_correct := [] -> {[i]: 0 <= eps and eps <= 1 and inv_eps = 1-eps};

Here is the trick: parameters are forbidden to define Farkas terms; however
parameters are perfectly allowed in summation. In that case, the resolution in-
terprets parameters as constants. Hence the trick to set ε as a parameter and
to put it in the summation by declaring an explicit affine form {[i,j,i’,j’,N]
-> -1*eps}. We then keep the definition of theta coefficients in terms fo Farkas
multipliers (theta def) and the domain of ε (eps correct).

Optimality We seek a schedule θ with a minimal latency `(θ) (number of steps).
When θ is an affine form, `(θ) may be bound by an affine form L(N) of the
structure parameters [6]: `(θ) ≤ L(N). This means that:

∀(i, j) ∈ DN : θ(i, j,N) ≤ L(N)

Which is, again, completely Farkas compliant. It remains to express L(N), which
have to be positive provided DN is not empty i.e. N ≥ 0. This translates to:

L(N) >= 0 on the parameter domain

latency := positive_on ([] -> {[N]: N >= 0});

theta(i,j,N) <= L(N)

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta

- (positive_on iterations) = 0;

bound_def := define latency with latency;

Finally, it remains to gather the constraints (positivity, correctness, optimal-
ity) to obtain the result:

lexmin (keep inv_eps,latency_0,latency_1,theta_0,theta_1,theta_2,theta_3,eps

in theta_correct*theta_def*eps_correct*theta_bounded*bound_def);

By priority order, we want to (i) maximize the depedence satisfied (mini-
mize inv eps), then (ii) to minimize the latency (L(N) = latency 0*N + la-
tency 1). This amounts to find the lexicographic minimum with variables ordered
as (inv eps,latency 0,latency 1). Note that eps and inv eps are parame-
ters. Adding them to the variable list of keep has the effect to turn them to
counters eps counter and inv eps counter. We obtain the following result,
pretty-printed using the -pretty option:

theta_0 = 0

theta_1 = -1

theta_2 = 1

fkcc: the Farkas Calculator 11

theta_3 = 0

latency_0 = 1

latency_1 = 0

eps_counter = 1

inv_eps_counter = 0

Hence θ(i, j,N) = N − j, L(N) = N and the dependence was satisfied
(eps counter = 1).

5 Conclusion

In this paper, we have presented fkcc, a scripting tool to prototype program
analysis and transformations using the affine form of Farkas lemma. The script
language of fkcc is powerful enough to write in a few lines tricky scheduling al-
gorithms and termination analysis. The object representation (polyhedron, affine
functions) is compatible with iscc[10], a widespread polyhedral tool featuring
manipulation of affine relations. fkcc provides features to generate iscc code,
and conversely, the output of iscc might be injected in fkcc. This will allow to
take profit of both worlds.

We believe that scripting tools are mandatory to avaluate rapidly research
ideas. So far, Farkas lemma-based research was locked by two facts: (i) applying
by hand Farkas Lemma is almost impossible and (ii) implementing an analysis
with Farkas lemma is traditionnally tricky, time consuming and highly bug prone.
With fkcc, computer scientists are now freed from these constraints.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: International
Static Analysis Symposium (SAS’10) (2010)

2. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practi-
cal automatic polyhedral parallelizer and locality optimizer. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design
and Implementation, Tucson, AZ, USA, June 7-13, 2008. pp. 101–113 (2008).
https://doi.org/10.1145/1375581.1375595

3. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-
linear constraint solving. In: Springer-Verlag (ed.) CAV. pp. 420–432. No. 2725 in
LNCS (2003)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th ACM Symposium on Principles of Programming Languages
(POPL’78). pp. 84–96. Tucson (Jan 1978)

5. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22(3), 243–268 (1988)

6. Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part I. one-
dimensional time. International Journal of Parallel Programming 21(5), 313–348
(Oct 1992). https://doi.org/10.1007/BF01407835

12 C. Alias

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
Multi-dimensional time. International Journal of Parallel Programming 21(6), 389–
420 (Dec 1992)

8. Feautrier, P., Lengauer, C.: Polyhedron model. In: Encyclopedia of Parallel Com-
puting, pp. 1581–1592 (2011)

9. Gonnord, L.: Accélération abstraite pour l’amélioration de la précision en Analyse
des Relations Linéaires. Ph.D. thesis, Université Joseph Fourier - Grenoble (2007)

10. Verdoolaege, S.: Counting affine calculator and applications. In: IMPACT (2011)

Experiments in Context-Sensitive Incremental and
Modular Static Analysis in CiaoPP

(Extended Abstract)

Isabel Garcia-Contreras1,2, Jose F. Morales1, and Manuel V. Hermenegildo1,2

1 IMDEA Software Institute
{isabel.garcia, josef.morales, manuel.hermenegildo}@imdea.org

2 Universidad Politécnica de Madrid

Keywords: Program Analysis · Abstract Interpretation · Fixpoint Algorithms ·
Incremental Analysis · Modular Analysis · Logic Programming

Introduction and motivation. Abstract interpretation is a widely used technique
for automatically detecting errors and proving program properties related to correct-
ness, security, cost, etc. Performing such analysis during software development helps
in early bug detection, but, given the size and complex structure of real-life pro-
grams, triggering a complete reanalysis for each set of changes is often too costly.
However, development iterations normally involve small modifications in practice,
which are often isolated within a small number of files or components. This can be
taken advantage of to reduce the cost of re-analysis by reusing previous informa-
tion. In particular, in CiaoPP [4, 2], incrementality-based cost reductions have been
achieved to date at two levels: on one hand, modular context-sensitive analysis
has been used to obtain global information on the whole program by iterating over
local analyses of its components (modules). While this technique has been primarily
aimed at reducing memory footprint, it can also achieve some incrementality. On
the other hand, fine grain context-sensitive incremental analysis [3] identi-
fies, invalidates, and recomputes only those parts of the analysis results that are
affected by program changes. This analysis has been used to achieve very high levels
of incrementality, with finer granularity (e.g., at program line level), but it does not
take advantage of the module structure.

Objectives. We have recently been working on combining these two techniques
within CiaoPP in order to achieve incrementality both at the intra- and inter-
modular levels. Extending the context-sensitive, fine-grained, incremental analysis
techniques to the modular setting requires dealing with the fact that the analysis
of a module depends on the analysis of other modules in complex ways, through
several paths to different versions (summaries) of the procedures. In order to bridge
this gap we have developed a framework that analyzes separately the modules of
a modular program, using context-sensitive fixpoint analysis while achieving both
inter-modular (coarse-grain) and intra-modular (fine-grain) incrementality. Our ob-
jective is to give an overview (and demo) of the approach and, specially, report on
the results (i.e., incremental gains) obtained so far.

Algorithm. The essence of the algorithm is that the concrete (possibly infinite)
program execution trees are abstracted as graphs (essentially, regular trees), with
the analysis information split by procedure (predicate), and partitioned by module,
while tracking the dependencies between predicates and modules. We solve the prob-
lems related to the propagation of the fine-grain change information across module

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160

boyer pdb

mon
mon_inc

mod
mod_inc

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160

boyer gr

mon
mon_inc

mod
mod_inc

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140 160

boyer def

mon
mon_inc

mod
mod_inc

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

boyer shfr

mon
mon_inc

mod
mod_inc

Fig. 1. Incremental analysis with different settings and domains

boundaries. We also work out the actions needed to recompute the analysis incre-
mentally after multiple additions and deletions across modules in the program. We
show that the analysis result is always correct and it is the best (most accurate)
over-approximation of the actual behavior of the program. The full description of
the algorithm is given in [1].

Experiments. The results of our experiments are also detailed in [1] and can be re-
produced in https://github.com/ciao-lang/ciaopp_tests, but we include here
some results for one characteristic program: a stylized version of the Boyer-Moore
theorem prover, written modularly in Prolog. The experiment chosen consists in
adding all the predicates in all the modules in the program one clause at a time,
(re)running the analysis after each addition, as a stress test of the algorithm. The
experiment is run with different domains: reachability (pdb), groundess (gr), depen-
dency tracking via propositional clauses (def), and sharing and freeness, (pointer
sharing and uninitialized pointers, shfr). The results (in terms of CiaoPP analysis
time) are given in Fig. 1. The analyzer settings shown are the traditional monolithic,
non-incremental analysis (mon), the (monolithic) incremental algorithm (mon inc),
the modular (coarse-grain incremental) algorithm (mod) and the current, fine-grain
modular algorithm (mod inc). It can be seen that the modular incremental approach
is faster in most cases, and all incremental approaches are significantly faster than
the traditional, non-incremental approach. In spite of the different costs of the vari-
ous abstract domains (e.g., analyzing with def takes at most 40ms while analyzing
with pdb takes at most 17ms), the trend is clear: incremental analysis performs
better than running the analysis from scratch. In general, the implementation and
evaluation show that the proposed modular algorithm achieves competitive and, in
some cases, improved, performance when compared to existing non-modular, fine-
grain incremental analysis techniques. Furthermore, thanks to the more detailed
propagation of inter-modular analysis information, our new algorithm outperforms
the traditional modular analysis even when analyzing from scratch.

References

1. Garcia-Contreras, I., Morales, J.F., Hermenegildo, M.V.: An Approach to Incremental
and Modular Context-sensitive Analysis. Tech. Rep. 1804.01839 (v4), arXiv (July 2019)

2. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao
System Preprocessor). Science of Comp. Progr. 58(1–2) (2005)

3. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS 22(2), 187–223 (March 2000)

4. Hermenegildo, M., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J., Puebla,
G.: An Overview of Ciao and its Design Philosophy. TPLP 12(1–2), 219–252 (2012)

Boost the Impact of Continuous
Formal Verification in Industry

Felipe R. Monteiro1, Mikhail R. Gadelha2, and Lucas C. Cordeiro3

1Federal University of Amazonas, Brazil, felipemonteiro@ufam.edu.br
2SIDIA Instituto de Ciência e Tecnologia, Brazil, mikhail.gadelha@sidia.com

3University of Manchester, UK, lucas.cordeiro@manchester.ac.uk

Abstract. Software model checking has experienced significant progress
in the last two decades, however, one of its major bottlenecks for practical
applications remains its scalability and adaptability. Here, we describe
an approach to integrate software model checking techniques into the
DevOps culture by exploiting practices such as continuous integration
and regression tests. In particular, our proposed approach looks at the
modifications to the software system since its last verification, and sub-
mits them to a continuous formal verification process, guided by a set of
regression test cases. Our vision is to focus on the developer in order to
integrate formal verification techniques into the developer workflow by
using their main software development methodologies and tools.

Keywords: Formal Software Verification, Model Checking, DevOps.

1 Motivation

Currently, the formal verification community faces a pressing problem to ensure
security and reliability of large codebases, which have a significant impact in
millions of users [1]. Even minor defects can lead to huge impacts for companies
and costumers [2]; for instance, in September 2018, attackers exploited three
Facebook vulnerabilities and stole access tokens from as many as 50 million
users, in order to take over their accounts [3]. In this particular context, software
verification plays an important role in ensuring the overall product reliability.
Even though formal techniques have been dramatically evolved over the past 15
years, the main challenges in the formal methods community remain scalability
and adoptability [4]. So how can we scale formal verification techniques for
real-world software systems? How can we increase adoption of formal verification
techniques by software engineers in industry?

In order to tackle both aforementioned questions, our vision is to integrate
formal verification techniques into the workflow of the main software develop-
ment methodologies and tools. Our work is inspired by recent insights described
by Sadowski et al. [2] who describe a set of lessons from building static analysis
tools at Google. We believe that formal methods can be effective in improving
software quality assurance of a large number of organisations around the globe.
In particular, our approach aims to provide a solution that applies formal veri-
fication in a way that is both (i) low-effort e.g., fits into existing processes, and
(ii) scalable to the large software systems used in industry. Here our focus is on

software model checking techniques combined with DevOps culture, particularly,
continuous integration (CI). On one hand, we have software model checking [4],
which has been successfully applied to discover subtle errors but, for larger ap-
plications, often suffers from the state-space explosion problem [5]. On the other
hand, we have continuous integration, which has been widely adopted by the
software development community, but relies on a test suite that typically does
not cover significant parts of the state-space [6].

We propose a continuous formal verification (CFV) approach, which aims to
automatically detect design errors and integration problems as quickly as possi-
ble. First, we concentrate the verification effort to code changes rather than the
entire system, thus, we only re-verify the code changes that could potentially
break the properties of a system; this verification process should run fast (e.g.,
in less than 5 minutes) in order to provide quick (and useful) feedback for devel-
opers. Second, we select the regression tests related to each code change (e.g., an
updated function), generalize these tests, and formally verify the code changes
using software model checking. Lastly, we gather all the information from this
analysis and report it back to the analytic and development team, who will carry
out this process continuously; this step is crucial according to Sadowski et al.
since careful developer workflow integration is key for any static analysis tool
adoption by engineers [2].

Our main contributions are twofold. Firstly, we propose a feasible inte-
gration of software model checking into DevOps practices, thus making formal
verification techniques accessible to software engineers. Here, our approach will
focus on the developer and their feedback; the goal is to increase the adoption of
our approach in real-world software projects by integrating our verification tool
into the developer workflow. Secondly, we propose to reduce the impact of state-
space explosion in development practices using existing regression tests in the
verification process, which will provide quick and useful feedback for developers
so that they can easily locate and fix bugs.

2 Continuous Formal Verification

The essence of this approach relies on the principle of compositional analysis [1].
Practically, we are inspired by CI practice, a well-known concept in Extreme
Programming, proposed by Martin Fowler [6]. CI is particularly relevant when
coupled with tools to automatically build and test a project’s code base. Since
the builds are generated after every incoming code changes (i.e., commits and
pull requests), problems can be detected much earlier. We can take advantage
of such modularity to apply formal techniques in a continuous environment by
model checking a software component only after it is changed, i.e., we place our
approach at diff-time. We use the same information (i.e., development history
and regression test cases), but in a way to substantially reduce verification com-
plexity and increase coverage in a pull-based development model (e.g., GitHub1).

The development cycle initiates with the developer submitting changes to
the code base through a software configuration management (SCM) system. For
each system build, we thus use the information from the SCM system to identify

1 More info at https://help.github.com/articles/about-pull-requests/

the components that have actually been modified and focus on these. Impor-
tantly, we focus on C projects and each function is considered as a component.
Equivalence checking [7] is then performed to identify which changes have an
actual impact on the code base. At this point, the regression test suite (contain-
ing unit and functional tests) is of paramount importance, since we select the
regression tests correspondent to the non-equivalent changed components. To
increase coverage, these regression tests are passed to a generalization process.
Finally, we check the use of non-equivalent components through the generalized
regression tests and collect the reports (e.g., counterexamples) and send it to the
analytics team. In order to adopt such an approach, a project must comply with
two basic guidelines: (i) the development process must be based on a continuous
integration environment and (ii) it must include a regression test suite. We are
currently building tools that can completely automate our CFV process.

The following sections describe the two steps of the process, highlighting
key challenges: identifying relevant code changes, and the model checking of
generalized test cases. As an illustrative example, we use the a GitHub project
called vec2, an ANSI-C type-safe dynamic array implementation. The repository
contains 22 test cases, which intend to cover all possible execution paths related
to the functionalities of the type-safe dynamic array. We focus on the function
vec insert , shown in Fig. 1, to exemplify our proposed approach.

1 #define vec unpack (v) \
2 (char∗∗)&(v)−>data , &(v)−>length , &(v)−>capac i ty , s izeof (∗ (v)−>data)
3

4 #define v e c i n s e r t (v , idx , va l) \
5 (v e c i n s e r t (vec unpack (v) , idx) ? −1 : \
6 ((v)−>data [idx] = (va l) , 0) , (v)−> l ength++, 0)
7

8 int v e c i n s e r t (char ∗∗data , int ∗ length , int ∗ capac i ty , int memsz ,
9 int idx) {

10 int e r r = vec expand (data , length , capac i ty , memsz) ;
11 i f (e r r) return e r r ;
12 memmove(∗ data + (idx + 1) ∗ memsz ,
13 ∗data + idx ∗ memsz ,
14 (∗ l ength − idx) ∗ memsz) ;
15 return 0 ;
16 }

Fig. 1: Implementation of the vec insert function that adds the val value in the
idx index of the vec structure. We omit the function vec expand for simplicity:
it reallocates the vector if it needs to be expanded.

2.1 Checking for Relevant Code Changes

We begin from the principle that if a modified version of a component is compu-
tationally equivalent to its older version, then it is not necessary to prove that
all properties that hold for the old version still hold for the modified one. Thus,
we use equivalence checking to check whether the modified components need to

2 Available at https://github.com/rxi/vec

be re-verified. Naturally, proving the equivalence of two functions is in general
undecidable [7], and the effort we spend in trying to do so might be wasted.
However, such an approach can potentially reduce the immediate verification ef-
fort, since proving the equivalence of two function versions can be less expensive
than re-verifying the function [7]. In addition, by proving that two versions of
a function are computationally equivalent, we eliminate the effort to re-verify
any other function that depends on it (unless that function has been changed
as well). Therefore, this approach limits the propagation of changes through the
system and, consequently, reduces the effort to overall system verification.

The equivalence check will happen in two steps: a (1) fast and imprecise
abstract syntax tree (AST) structural equivalence check [8], and a (2) slow and
precise formal check e.g. bounded model checking (BMC). In the AST structural
equivalence check, easy cases will be caught without the need to formally verify
it, e.g., a function is renamed and the call sites are updated, or comments are
added to a function body. If the AST is structurally not equivalent, we then
encode the old and the new functions, and check if they are equivalent for the
same inputs. A time limit is set for the formal check since it is more useful to
spend time running the regression tests than checking their equivalence; if the
time limit is exhausted, we assume they are not equivalent and start the tests.

In our illustrative project vec we find commits that would benefit from our
approach. In commit 40d5cc173, the developer changes that name of a macro
vec absindex used in an early version of the function shown in Fig. 1, and in
commit 7d8588bc4, the developer removes the support for negative indexes when
accessing arrays. In the former, the ASTs would found to be equivalent, neither
triggering the next formal check nor starting the tests, while in the latter, the
formulas would be found to be not equivalent by the formal check, triggering the
regression tests.

Open Challenges. There are many techniques that could be applied to
perform equivalence checking such as SYMDIFF [9] and CORK [10] tools or
through directed incremental symbolic execution (DiSE) [11]; in future, we will
evaluate their performance in this CFV setting. We will also exploit this module
by generating test cases from code changes [12].

2.2 Model Checking Generalized Tests

It is of paramount importance a software project follows two key best-practice
principles: (i) keep the project as modular as possible and create short functions
that focus on one particular objective (ii) provide at least one regression/unit
test for every function. Such an approach is key to a successful compositional
analysis of the software project, where the combination of the analysis result of
its parts represents the analysis result of the whole.

After pruning the unmodified components, we only focus on the existing re-
gression test cases related to the modified ones, in order to reduce the state
space to be explored by the model checker. However, we do not generate new
concrete values for the test cases with the purpose of maximizing the code cover-
age. Instead, we combine existing test cases with non-deterministic input values
to maximize the coverage of this verification. The use of regression tests also help

3 https://github.com/rxi/vec/commit/40d5cc17ea41923c66286078bae82cc09c6458f7
4 https://github.com/rxi/vec/commit/7d8588bc96c4c7aa68beb38f15704bd6135c0a5e

to reduce the state space by breaking the global model (containing the entire
program) into local models (containing only the functions under verification)
and generate on demand the reachable states to be visited by the model checker,
starting with the state described by the test case. This reduces the number of
paths and variables to be considered during model checking.

In our illustrative project vec, by measuring the number of linearly inde-
pendent paths in all functions, i.e., the project’s cyclomatic complexity [13], we
clearly see the benefit of focusing on the regression tests. In the case of vec, the
entire system has a cyclomatic complexity of 24; in contrast, its regression tests
have an average cyclomatic complexity of 1.

Through BMC, we can check for all possible paths in the implementation
shown in Fig. 1, by non-deterministically assigning a value for each function
parameter (i.e., pos, and val) assuming a valid initialized structure (i.e., v).
Rather than modifying the program, we modify the regression tests and replace
the concrete input values by non-deterministic choices. Here, we replace the series
of function invocations with a non-deterministic one (see lines 5–7 of Fig. 2b).
We can try to get full coverage in this particular module because we already
pruned the state space by only selecting the modified parts of the system.

1 t e s t s e c t i o n (” v e c i n s e r t ”) ;
2 v e c i n t t v ;
3 v e c i n i t (&v) ;
4 int i ;
5 for (i = 0 ; i < 1000 ; i++)
6 v e c i n s e r t (&v , 0 , i) ;
7 t e s t a s s e r t (v . data [0] == 999) ;
8 t e s t a s s e r t (
9 v . data [v . l ength − 1] == 0) ;

10 v e c i n s e r t (&v , 10 , 123) ;
11 t e s t a s s e r t (v . data [1 0] == 123) ;
12 t e s t a s s e r t (v . l ength == 1001) ;
13 v e c i n s e r t (&v , v . l ength − 2 , 678) ;
14 t e s t a s s e r t (v . data [9 9 9] == 678) ;
15 t e s t a s s e r t (
16 v e c i n s e r t (&v , 10 , 123) == 0) ;
17 v e c i n s e r t (&v , v . length , 789) ;
18 t e s t a s s e r t (
19 v . data [v . l ength − 1] == 789) ;
20 v e c d e i n i t (&v) ;

(a) Original test.

1 t e s t s e c t i o n (” v e c i n s e r t ”) ;
2 v e c i n t t v ;
3 v e c i n i t (&v) ;
4 int va l = nondet in t () ;
5 s i z e t pos = nond e t s i z e t () ;
6 v e c i n s e r t (&v , pos , va l) ;
7 t e s t a s s e r t (v . data [pos] == val) ;
8 v e c d e i n i t (&v) ;

(b) Generalized version.

Fig. 2: Generalization of the regression test for the function shown in Fig. 1.

Open Challenges. Our main difficulty here is how to deal with false nega-
tives as the non-deterministic choice of values for program variables may force
the exploration of paths that are infeasible in the original program. So, we need
to find a balance between coverage and soundness. We also need to increase
automation as much as possible. One may combine techniques to automatically
generate tests based on counterexamples [14] or source code [15]. We will also
increase the power of this analysis by using conditional verifiers [16] or applying
different model checking approaches (i.e., explicit-state).

3 Related Work

Fitzgerald and Stol [17] present a holistic overview of the activities related to
continuous software engineering, which includes continuous testing and verifica-
tion. Although they do not propose a new approach, they highlight the impor-
tance of continuous (and automatic) testing and verification in the context of
DevOps. Interestingly, Beyer and Lemberger [18] perform a comparison between
software testers and software model checkers, which shows that model checkers
are mature enough to be used in practice (they even outperform testing tools),
and the combination of both techniques could lead to even better results. Indeed,
there are many reports of successful attempts that use formal techniques in large
software systems.

For instance, Klein et al. [19] show how to scale formal proofs based on soft-
ware architecture to real systems at low cost; Godefroid, Levin, and Molnar [20]
describe the remarkable impact of SAGE tool, which performs dynamic symbolic
execution to hunt for security issues in Microsoft applications; Cordeiro, Fis-
cher, and Marques-Silva [21] as well as Yin and Knight [22] propose approaches
to conduct formal verification of large software systems. Furthermore, there are
two important studies that tackle the combination of formal techniques with
continuous integration, which led to promising results and reflect the need and
scientific challenges in the industry to follow this road. First, Chudnov et al. [23]
describe how Amazon Web Services (AWS) prove the correctness of their Trans-
port Layer Security (TLS) protocol implementation, and how they use CI tools
to keep proving the software properties during its lifetime. Similarly, O’Hearn [1]
presents Infer, a static analyzer used at Facebook following a continuous reason-
ing approach. Neither Chudnov et al. nor O’Hearn try to handle model checking
in a continuous process; the latter states this as an open challenge for the com-
munity.

These cases highlight the impact of formal techniques in real software sys-
tems; however, they do not present guidelines to generalize these approaches to a
wide range of software projects, which could lead to a significant adoption of for-
mal techniques by practitioners. Thus, there is still an open-call for approaches
that could potentially popularize formal techniques in software engineering prac-
tices.

4 Conclusions and Future Work

Model checking of entire systems is usually not feasible for many industrial appli-
cations due to the state-space explosion problem, however, one of the scalability
challenges can be solved through leveraging changes to the system. Thus, we
propose CFV, an approach with the potential to detect software vulnerabilities
by combining dynamic and static verification to reduce the state space. This
potential propels us to further research this topic: we are currently developing
an automated software tool to tackle the key challenges of equivalence checking
and test case generalization, so it can be applied to large open-source projects.
We are also working in close collaboration with software developers at Samsung
with the goal of integrating our automated reasoning tool into their workflow,
thus increasing adoption of formal methods in industry.

References

1. O’Hearn, P.W.: Continuous Reasoning: Scaling the Impact of Formal Methods.
In: LICS. (2018) 13–25

2. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4) (2018) 58–66

3. Rosen, G.: Security Update Facebook, Inc. (2018) [Online; accessed September-
2018].

4. Clarke, E.M., Henzinger, T.A., Veith, H. In: Introduction to Model Checking.
Springer International Publishing, Cham (2018) 1–26

5. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
ESBMC 5.0: An Industrial-Strength C Model Checker. In: ASE. (2018) 888–891

6. Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B.: The Impact of Con-
tinuous Integration on Other Software Development Practices: A Large-scale Em-
pirical Study. In: ASE. (2017) 60–71

7. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of
similar programs. Softw. Test., Verif. Reliab. 23(3) (2013) 241–258

8. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. CAV’11, Berlin, Heidelberg, Springer-Verlag (2011) 669–685

9. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A Language-
agnostic Semantic Diff Tool for Imperative Programs. In: CAV. (2012) 712–717

10. Lopes, N.P., Monteiro, J.: Automatic Equivalence Checking of Programs with
Uninterpreted Functions and Integer Arithmetic. STTT 18(4) (2016) 359–374

11. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed Incremental Symbolic
Execution. In: PLDI ’11. (2011) 504–515

12. Godefroid, P., Lahiri, S.K., Rubio-González, C.: Statically Validating Must Sum-
maries for Incremental Compositional Dynamic Test Generation. In: SAS. (2011)
112–128

13. Bang, L., Aydin, A., Bultan, T.: Automatically computing path complexity of
programs. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ESEC/FSE 2015, New York, NY, USA, ACM (2015) 61–72

14. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from Witnesses. In
Dubois, C., Wolff, B., eds.: TAP. (2018) 3–23

15. Christakis, M., Emmisberger, P., Godefroid, P., Müller, P.: A General Framework
for Dynamic Stub Injection. In: ICSE. (2017) 586–596

16. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based Construc-
tion of Conditional Verifiers. In: ICSE. (2018) 1182–1193

17. Fitzgerald, B., Stol, K.J.: Continuous Software Engineering: A Roadmap and
Agenda. Journal of Systems and Software 123 (2017) 176–189

18. Beyer, D., Lemberger, T.: Software Verification: Testing vs. Model Checking. In:
HVC. (2017) 99–114

19. Klein, G., Andronick, J., Fernandez, M., Kuz, I., Murray, T., Heiser, G.: Formally
Verified Software in the Real World. Commun. ACM 61(10) (2018) 68–77

20. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: Whitebox Fuzzing for Security
Testing. Queue 10(1) (2012) 20:20–20:27

21. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: Continuous Verification of Large
Embedded Software Using SMT-Based Bounded Model Checking. In: ECBS.
(2010) 160–169

22. Yin, X., Knight, J.: Formal Verification of Large Software Systems. In: NFM.
(2010) 192–201

23. Chudnov, A., Collins, N., Cook, B., Dodds, J., Huffman, B., MacCárthaigh, C.,
Magill, S., Mertens, E., Mullen, E., Tasiran, S., Tomb, A., Westbrook, E.: Contin-
uous Formal Verification of Amazon s2n. In: CAV. (2018) 430–446

Handling Heap Data Structures in
Backward Symbolic Execution

Robert Husák, Jan Kofroň, and Filip Zavoral

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
{husak, zavoral}@ksi.mff.cuni.cz, jan.kofron@d3s.mff.cuni.cz

Abstract. Backward symbolic execution (BSE), also known as weakest precon-
dition computation, is a useful technique to determine validity of assertions in
program code by transforming its semantics into boolean conditions for an SMT
solver. Regrettably, the literature does not cover various challenges which arise
during its implementation, especially when we want to reason about heap objects
using the theory of arrays and to use the SMT solver efficiently. In this paper,
we present our achievements in this area. Our contribution is threefold. First, we
summarize the two most popular state-of-the-art approaches used for BSE, denot-
ing them as disjunct propagation and conjunct combination. Second, we present
a novel method for modelling heap operations in BSE using the theory of arrays,
optimized for incremental checking during the analysis and handling the input
heap. Third, we compare both approaches with our heap handling implementa-
tion on a set of program examples, presenting their strengths and weaknesses.
The evaluation shows that conjunct combination is the most efficient variant, ex-
ceeding the straightforward implementation of disjunct propagation in an order
of magnitude.

Keywords: backward symbolic execution, weakest precondition, heap data struc-
tures, input heap, theory of arrays

1 Introduction

Symbolic execution is an established technique to explore semantics of programs, create
tests with high code coverage and discover bugs [2]. To achieve that, it systematically
explores the state space of the program reachable from the entry point, transforming the
possible execution paths into boolean constraints. These constraints are usually passed
to an SMT solver to determine the reachability of the corresponding paths. To reason
about objects on the heap, several of the practically-usable tools [6, 18] use the theory
of arrays [10], which can be handled by the most of the state-of-the-art SMT solvers [8].

If we are not interested in the exploration of the whole program and we want to
inspect only one particular problematic place instead, we can use the backward variant
of symbolic execution, sometimes referred to also as the weakest precondition analy-
sis [7, 9]. As its name suggests, backward symbolic execution starts at the assertion of
our interest and traverses the execution direction backwards. If it manages to reach the
entry point and find an assignment satisfying the path constraints, it can provide us with
a valuable test case. Otherwise, if no under-approximation is used and the assertion
violation is proved to be unreachable, it is validated.

2 Robert Husák, Jan Kofroň, and Filip Zavoral

As we can see, each run of backward symbolic execution can be very expensive in
terms of resources. However, the information it provides is potentially very detailed and
useful for detecting the causes of errors. Therefore, it is important to use it in an appro-
priate context. There is a plethora of techniques which use some kind of abstraction,
enabling them to efficiently analyse large programs for the cost of introducing false
positives [17, 15, 11]. Backward symbolic execution can be then used only at the places
where these techniques found potential errors in order to examine them further. For ex-
ample, the authors of Snugglebug were able to verify 29 of 38 feasible null dereference
exceptions found by FindBugs [11] in a Java codebase of 750 kLOC [7]. Another usage
of backward symbolic execution is to run it in an interactive fashion, enabling program-
mers to gather as much information about a specific program error as possible [12].

Although backward symbolic execution can be indeed very useful, it is not as popu-
lar in the literature as the forward variant. Therefore, many important design considera-
tions and potential complications have to be rediscovered during each implementation.
For example, when calling an SMT solver multiple times, it is often efficient for the
subsequently analysed conjunctions to share a common prefix. As we illustrate in Sec-
tion 2, that complicates the way to handle the constraints, because we then should not
alter the existing ones, only add new ones. We tackle this problem and other issues in
our contributions:

1. We summarize the existing algorithms commonly used for backward symbolic ex-
ecution in Section 3.

2. We present a novel way to transform heap operations into boolean constraints in
Section 4. These transformations fit into the mentioned algorithms and utilize per-
formance enhancements of the state-of-the-art SMT solvers.

3. We compare the performance of all the presented approaches on a set of code ex-
amples in Section 5.

In Section 6, we compare our approach to the most important papers and tools
related to our work, while Section 7 concludes.

2 Problem

All the issues related to implementing a backward symbolic execution tool stem from its
very nature. Forward symbolic execution starts with a fixed set of symbolic input vari-
ables and all the gradually constructed constraints can be essentially build from them.
With backward symbolic execution, the situation is different, as the set of input vari-
ables constantly changes according to the variables encountered along the way. Every
time a variable is read, it is added to this set; every time it is assigned to, it is removed
from it.

We will illustrate the approaches on a simple method ScalarExample in List-
ing 1.1. The forward variant starts with a symbolic variable a assigned to a, at lines 2
and 3 it then assigns 1 to b and 2 to c. When it comes to the assertion a != b at line 4,
it interprets it using the known values and negates the expression to discover any error
inputs, resulting in a simple condition a = 1. The backward variant starts directly at the

Handling Heap Data Structures in Backward Symbolic Execution 3

Listing 1.1: Sample C# code to demonstrate symbolic execution

1 void ScalarExample(int a) {
2 int b = 1;
3 int c = 2;
4 Debug.Assert(a != b);

5 }

6
7 void HeapExample1(Node a) {
8 a.next = new Node();
9 Node b = a.next;

10 Debug.Assert(a != b);

11 }

12
13 void HeapExample2(Node a) {
14 Node b = a.next;

15 Node c = new Node();
16 Debug.Assert(b != c);

17 }

assertion, creating a condition a = b, where a and b are the input variables correspond-
ing to their symbolic variables a and b, respectively. As the condition is not dependent
on c in any way, it can safely skip its assignment at line 3. Next, the assignment of 1
into b at line 2 must effectively remove it from the set of input variables and replace it
by 1 in the condition, resulting again in a = 1. Although this simple example does not
demonstrate any significant differences, things become more complicated when heap
operations and various efficiency optimizations are involved:

Constantly changing input heap: The rule with the constantly changing set of input
variables applies to the input heap as well. Moreover, its analysis gets more compli-
cated, because the objects from the input heap might get intertwined with the ones
created during the analysed program run. Consider the assertion a != b on the line 10
in Listing 1.1. At first, the objects in the input heap might be possibly referenced by
both a and b. The field read at line 9 causes b to be loaded from the current input heap.
However, we cannot assume that the loaded reference is from the input heap as well,
because it can always be assigned an explicitly allocated object, as at line 8. There-
fore, we need to provide a way to correctly distinguish between the input heap and the
explicitly allocated objects and to enable their various interactions.

Incremental solving: There are many usage scenarios of SMT solvers where we need to
call them successively on similar formulas. E.g., in the case of symbolic execution, we
might want to explore two independent code branches sharing the same prefix. There-
fore, a modern SMT solver can be usually used incrementally, with the possibility to
cache certain knowledge between subsequent calls. To add and remove assertions, they
offer two useful mechanisms: an assertion stack and assumptions. The former enables
us to use a stack-based system of scopes containing the particular assertions, with the

4 Robert Husák, Jan Kofroň, and Filip Zavoral

ability to destroy all the data of the topmost scope while retaining the remaining ones.
The latter works by adding every assertion a in the form of l =⇒ a, where l is a literal
specified later during each call of the solver. Because we want to utilize these features
to optimize our SMT calls, it is important that we construct the formulas in a proper
way, possibly combining the strengths of both techniques.

3 Backward Symbolic Execution

3.1 Notation

Let us clarify the terminology and semantics of various formulas and symbols used
in this paper. If we speak about a function or mapping g : A → B, it is understood
as a partial function, hence defined on the subset of its domain A. If g(a) for a ∈ A
is not defined, we denote it as g(a) = undef. The function g[a → b] is defined to be
the same as g, except for it maps a to b. This notation can be generalized for a set:
g[{a1, ..., an} → b] = g[a1 → b]...[an → b].

As to the formalism used for SMT queries, many-sorted first-order logic is used.
Because the meaning of sort in logic corresponds to the meaning of type in computer
science, we will use these two names interchangeably, according to the context. The
signature Σ = (S,F ,P) comprises a set of sorts S, a set of function symbols F and
a set of predicate symbols P. Symbolic variables Σv, terms Σt, atoms Σa, and formulas
Σ f are derived from the signature, using the standard recursive way. A formula ϕ[a/b]
is constructed by replacing all the occurrences of a in ϕ by b. The function FreshΣv

retrieves a symbolic variable not yet used in any context. In general, for any domain A,
FreshA retrieves a variable a ∈ A, which is not yet used in the analysis.

Let C be a set of classes contained in the analysed program. For each class c ∈ C,
there is a corresponding set Fc containing all its fields. All the fields in the program are
contained in F =

⋃
c∈C Fc. To enable working with reference symbolic variables, we

introduce a set of reference sorts R = {σc | c ∈ C} ⊂ S. As an instrument to reason about
types of fields and variables, we use function t : V ∪ F → S. Ft(v) as an abbreviation
for Fc where σc = t(v). Reference fields FR and value fields FV are defined as follows:

FR = { f ∈ F | t(f) ∈ R} FV = F \ FR

Analogicaly, reference and value variables:

VR = {v ∈ Σv | t(v) ∈ R} VV = Σv \ VR

Note that the sorts R representing reference variables are used only to ease formal
description of heap operations. They are effectively replaced by functions on arrays and
integers, as we describe in Section 4. All the reference variables are expected to point
to objects on the heap, there is no notion of low-level pointers and of accessing stack
variables by references.

To reason about a certain program, we expect it to be given as a control flow graph
(CFG). Each node n contains at most one operation n.op and each edge e = (n1, ψe, n2) is
marked with a condition ψe. The possible operations follow: scalar assignment of term

Handling Heap Data Structures in Backward Symbolic Execution 5

vt ←s t, reference assignment vt ←r vr, reference comparison assignment1 vt ← (v1
r =

v2
r), new object creation vt ←r new T , field read vt ← vr. f and field write vr. f ← vv.

Note that the last two operations can occur both for reference and variable fields, in
some cases we denote it by←r and←s, respectively. Assertions are modelled as edges
to special nodes.

To keep the scope limited, this paper does not directly address handling loops, in-
terprocedural analysis or recursion. In order to evaluate our approach on programs of
smaller size, we use a simple preprocessor for CFGs, which unwinds the loops for a
given number of iterations. To handle interprocedural calls, we plan to extend it to han-
dle inlining of the procedures up to a certain level of recursive calls. We are aware that
this approach is underapproximate and does not scale well on larger programs. In or-
der to mitigate this issue, we will inspire from the existing tools which were able to
efficiently extend backward symbolic execution into an interprocedural analysis. Snug-
glebug uses directed call graph construction and tabulation, enabling it to explore the
call graph lazily and reuse certain summaries obtained for each procedure [7]. Alter
combines backward and forward symbolic execution to combine method summaries,
utilizing interpolant computation to learn from infeasible paths [16].

3.2 Algorithm

Whereas in forward symbolic execution we usually want to reasonably spread our anal-
ysis among the state space to achieve high code coverage [2], backward symbolic exe-
cution often works by gathering summaries towards the entry point [7, 1]. At least in the
intraprocedural case it is a natural approach, as we are interested in finding a feasible
path between the entry node and the target node.

BSE(cfg, ntrg)
1: var states: node→ state
2: states[ntrg]← state representing true
3: for all node n in cfg sorted by reverse dependency on ntrg do
4: var deps← {(ψe, ndep, states[ndep]) | edge (n, ψe, ndep) in cfg}
5: states[n]←Merge(n, deps)
6: if DoSolve() ∧ Solve(GetCondition(states, n)) = UNSAT then
7: states[n]← state representing false
8: return states

Fig. 1: Backward symbolic execution algorithm

An overall algorithm structure is shown in Fig. 1. Given a target node ntrg, it tra-
verses cfg backwards towards the entry node and gathers useful information along the
way. The information is stored in the states associative array. In the beginning, because
we expect cfg to be acyclic, we can sort its nodes according to their topological order in

1 We did not put reference comparison directly in the edge conditions so that we can describe
its processing later in the unified manner with the other heap operations, see Section 4.

6 Robert Husák, Jan Kofroň, and Filip Zavoral

the reversed cfg, skipping those not reachable from ntrg. This way, when processing a
node, we are sure that the dependent nodes were already processed. For each node, we
gather the states of the directly adjacent nodes and their corresponding edge conditions
into deps. Merge is a core function responsible for inferring the state of a given node
according to its dependencies. DoSolve is a heuristic returning true for the entry node
and possibly also during the exploration so that certain infeasible parts get pruned. Get-
Condition is used to gather the condition corresponding to a given state, returns false if
ntrg is unreachable from that node. Eventually the algorithm retrieves all the computed
states. The caller can then extract interesting pieces of information from it, such as a
possible input driving the execution towards ntrg.

state: formula in DNF
MergeDisj(n, deps)
1: var merged← disjunction of {ψe ∧ d | d disjunct in ϕ, (ψe, ndep, ϕ) ∈ deps}
2: return ProcessOperationDisj(Simplify(merged), n.op)

ProcessOperationDisj(state, vt ←s t)
1: return state[vt / t]

GetConditionDisj(states, n)
1: return states[n]

Fig. 2: Backward symbolic execution implementation using disjunct propagation

In the literature, we have identified two main possible implementations of this al-
gorithm. The first, listed in Fig. 2, is based on formulas in DNF and their propagation
in the form of disjuncts [7]. MergeDisj merges the disjunctions in all the dependent
nodes and enhances them by their corresponding edge conditions, simplifying the re-
sulting formula by Simplify and passing it to ProcessOperationDisj. Simplify applies
various techniques of reducing a disjunction size while maintaining its semantics. Pro-
cessOperationDisj handles an assignment vt ←s t by replacing the target variable vt by
the term t representing its value, GetConditionDisj simply returns the disjunction for
the given node. Heap operations and the implementation of GetCondition for heaps is
described in Section 4.

In Fig. 3, the other implementation is listed [1]. Instead of propagating a set of dis-
juncts to the entry node, it associates each node n with a condition ψn describing its
semantics and control flow. As seen in GetConditionConj, to reason about the whole
path, we can pass a conjunction of these conditions to an SMT solver, which enables
an efficient incremental usage. Since we can reason about mutable variables, our state
contains also a map vers containing a version number for each encountered program
variable. Unlike the previous case, we need to store certain information about a sym-
bolic heap in each state; the details will be provided in Section 4.

MergeConj works as follows. Each node n is associated with a propositional vari-
able cn to express that the control flow reached it. The condition ψn is an implication
with cn on the left side. The right side consists of two parts: a join condition ψ join and an
operation condition ψop. The purpose of ψ join is to model the branching of the control

Handling Heap Data Structures in Backward Symbolic Execution 7

state: (node condition ψn, vers: VV → N, heap)
MergeConj(n, deps)
1: var mergedVers← merge vers in deps to get the highest of each entry
2: (var mergedHeap, var heapJoinConds)←MergeHeaps(heaps in deps)
3: var ψ join ← disjunction of
{versioned ψe ∧ cndep∧ JoinVers(vers, mergedVers) ∧ heapJoinCond for heap
| (ψe, ndep, ψndep , vers, heap) ∈ deps}

4: (var ψop, var finalVers, var finalHeap) ← ProcessOperationConj(mergedVers, mergedHeap,
n.op)

5: return (cn =⇒ ψ join ∧ ψop, mergedVers, mergedHeap)
ProcessOperationConj(vers, heap, vt ←s t)
1: if vers[vt] = undef then
2: return (true, vers, heap)
3: else
4: var oldVer← vers[vt]
5: var newVers← vers[vt → oldVer + 1, {unknown variables in t} → 0]
6: return (voldVer

t = t versioned by newVers, newVers, heap)

GetConditionConj(states, n)
1: return cn ∧ conjunction of ψn′ where n′ is reachable from n

Fig. 3: Backward symbolic execution implementation using conjunct combination

flow by creating a disjunction on the edge conditions where each disjunct redirects the
flow to the corresponding cndep and possibly synchronizes the variable versions of the
dependent nodes using JoinVers. An operation condition, created by ProcessOpera-
tionConj, handles an assignment by making the given variable under its current version
equal to the given term and associating the variable with a new version. Notice that if
vt has not been encountered so far, we can safely ignore the operation. Heap operation
handling is described in Section 4, including the merging of heaps.

As we can see, each implementation is connected with certain advantages and dis-
advantages. The disjunct propagation approach is based on maintaining sets of disjuncts
and simplifying them, while the operations are handled as term substitutions. As a re-
sult, the final condition can be potentially much simpler than in the other case, because
it does not contain any helper variables representing various versions and Simplify can
help to get rid of various repetitive patterns. On the other hand, if the simplification is
not successful enough, the size of the resulting formula can be exponential with respect
to the number of calls to Merge. Furthermore, it cannot fully utilize incremental SMT
solvers, as they work by adding immutable conjuncts to an assertion stack. The conjunc-
tion combination case is able to use them efficiently and the generated condition size is
usually linear with respect to the number of the analysed nodes, which is redeemed by
the presence of helper variables.

Although in this work, the implementations are handled as two separate techniques,
we plan to pursue a way to efficiently combine them, using the best features of both.
Creating simple procedure summaries might be crucial for developing an efficient in-

8 Robert Husák, Jan Kofroň, and Filip Zavoral

terprocedural algorithm, whereas utilizing an incremental SMT solver might help with
exploring large program state.

4 Modelling Heap Using Array Theory

4.1 Main Idea

The array theory enables SMT solvers to reason about heap memory in forward sym-
bolic execution and concolic execution [6, 18]. Its axioms, in addition to those of theory
of uninterpreted functions, follow [4]:

∀a, i, j (i = j⇒ read(write(a, i, v), j) = v)

∀a, i, j (i , j⇒ read(write(a, i, v), j) = read(a, j))

∀a, b ((∀i(a[i] = b[i])⇔ a = b)

As we can see, array theory generalises the operations of the array data structure,
with the only difference being the immutability of the array variables. In the forward
variant of symbolic execution, a common approach is to associate an array with each
defined field and represent all the references by integers [18]. Reading a value from
an instance can be then naturally modelled by using the read operation on the corre-
sponding reference and array. Writing a value is similarly performed by using the write
operation to produce a new version of the particular array. To ensure that different allo-
cations of new objects do not reference the same object, we can use an internal counter
and increment it every time an allocation is performed (allocation site counting) [3]. To
denote null references, 0 is used.

All these principles can be directly adopted for backward symbolic execution as
well [7]. However, to our knowledge there is a serious problem not sufficiently tackled
in the literature. If we do not analyse a program from its very start, we expect that
there are existing objects on the heap, prior to the entry point, where the analysis begins
from, being called the input heap. Therefore, each reference can point either to an object
located in the input heap, to null, or to an object allocated explicitly during the analysis.
The problem is that if we do not constrain the references from the input heap to be
distinct from the explicitly allocated objects, the SMT solver might produce a model
where the references from those two distinct groups are equal.

Consider the method HeapExample1 in Listing 1.1. Apart from the instance created
at line 8, there is also an instance passed as the parameter a. Because this instance
was created before the method call, we must assert that it is distinct from the former.
Otherwise, an SMT solver might create an invalid model where a = b, so the input heap
contains a reference to the explicitly created instance before it even exists.

Furthermore, all the references from a in the beginning of the method must point
either to null or to other input heap instances. In method HeapExample2, we can see
the reason. If we do not constrain the reference loaded from a.next in any way, the
SMT solver can create a model where b = c.

A natural approach used in our solution is to restrict all the input heap objects to
be represented as negative integers. In the case of forward symbolic execution, we can

Handling Heap Data Structures in Backward Symbolic Execution 9

remember the first version of the variable representing each field and then constrain it
whenever we access it from any reference. In HeapExample1, we start with an input
reference a ≤ 0 and an array variable next0 representing the field next in the beginning.
At line 8 we assert next1 = write(next0, a, 1), making next1 the current version of the
field. Nevertheless, when we access the field at line 9, we can retrospectively add a
constraint read(next0, a) ≤ 0, making a.next from the input heap either to be null or
to reference another object from the input heap. As we only add constraints and never
alter the existing ones, this approach is naturally efficient for incremental solving.

When trying to using this approach in backward symbolic execution, we encounter
a major problem. Because the view of the input heap continues to change as the analysis
proceeds backwards, we cannot use any single version of the array variable representing
the given field. For example, if we decide to set the input heap constraint at line 9 as
read(next0, a) ≤ 0, we prevent a.next to be assigned any explicitly created instance,
which exactly happens at line 8.

As we explain below, we tackle this problem by creating a helper “input” array
variable for each field and firmly asserting its equality with the current field variable
version only when explicitly checking the condition. A similar solution is created also
for the reference variables, as they face the same issue.

4.2 Operation Definitions

The implementation of heap operation handling for the disjunct propagation algorithm
from Fig. 2 is shown in Fig. 4. To mark symbolic variables corresponding to reference
variables and fields, we use the s superscript. For a reference variable v, vs represents a
symbolic integer variable; for a field f , f s represents a symbolic array variable indexed
by integers. The value sort of f s is t(f) if f ∈ FV , integer otherwise. The semantics
of a reference variable v is as follows. If vs = 0, v is null; therefore, nulls = 0. If
vs > 0, v references an object explicitly created during the analysed part of the program.
Otherwise, if vs < 0, v references an object in the input heap, i.e., it is created in the not
yet analysed code.

We can see that assignments, comparisons and new object creations are imple-
mented as simple replacements of the corresponding target variables in the existing
formula. FreshN+

ensures that each created object is represented by a distinct number.
A field write replaces all the occurrences of the given field array variable f s by an
expression that writes the given value vv to f s on the index given by the instance vr.
Because vv can be either a reference variable or a scalar value (term), we use a helper
function Symb which optionally adds the s superscript if vv ∈ VR. Because the operation
would not have been executed if vr was null, we also add the condition vs

r , 0.
When reading a value from a field, we distinguish between the scalar case←s and

the reference case←r. In the scalar case, we just replace the read variable by the formula
representing array read and assert that vr is not null. In the reference case, we also need
to handle the aforementioned problems with input heap. Therefore, for each field f , we
create also a helper symbolic array variable f in, which is never rewritten during any
operation. By adding read(f in, vs

r) ≤ 0 we ensure that any read from the input heap
using vr will always either be null or reference an input heap object. These variables are
then used in GetConditionDisjHeap, where we associate all the constraints gathered for

10 Robert Husák, Jan Kofroň, and Filip Zavoral

ProcessOperationDisjHeap(state, op)
1: switch op do
2: case vt ←r vv

3: return state[vs
t / vs

r]
4: case vt ← (v1 = v2)
5: return state[vt / (vs

1 = vs
2)]

6: case vt ←r new T
7: return state[vs

t / FreshN+ ()]
8: case vr. f ← vv

9: return state[f s / write(f s, vs
r ,Symb(vv))] ∧ vs

r , 0
10: case vt ←s vr. f
11: return state[vt / read(f s, vs

r)] ∧ vs
r , 0

12: case vt ←r vr. f
13: return state[vs

t / read(f s, vs
r)] ∧ vs

r , 0 ∧ read(f in, vs
r) ≤ 0

GetConditionDisjHeap(states, n)
1: var inputRefs← gather reference symbolic variables in states[n]
2: return states[n] ∧∧ f∈FR

f s = f in ∧∧v∈inputRefs v ≤ 0

Fig. 4: Heap operation modelling in the disjunct propagation approach from Fig. 2

them with their corresponding fields. We also identify all the input heap references and
constrain them to be ≤ 0 as well.

As we can see from the algorithms in Fig. 2 and Fig. 4, the disjunct propagation
approach is straightforward to implement and the condition transformations directly
correspond to the operations. However, its efficiency heavily depends on the implemen-
tation of formula handling, especially their substitution and simplification. The best
results are supposed to be obtained by a custom implementation which reflects all the
requirements of the particular project [7]. It is also possible to reuse existing solutions,
for example the efficient algorithms for terms in Z3 using its API [8].

Nevertheless, even with the best implementation possible, the conditions in certain
programs can grow beyond a reasonable complexity, where every term substitution or
simplification consumes too many resources. Therefore, we will now focus on the im-
plementation of heap operations in Fig. 5 for the conjunct combination based algorithm
shown in Fig. 3. Although the semantics regarding fields as array variables and refer-
ences as integer variables remains the same, there are several differences, making the
operations more complex. Because each condition is associated with the semantics of
a single node and we cannot manipulate conditions for the already processed nodes,
we are not allowed to use term substitution. Instead, we utilize a version-based mecha-
nism similar to the implementation of assignment in ProcessOperationConj, where the
version of the given variable is incremented and its equality with the particular term is
added to the condition.

As a result, each node is also associated with a symbolic heap (η, α). The environ-
ment η contains all the current input heap reference variables and maps each of them
either to 0 or to an integer symbolic variable. In the beginning of the analysis, η con-

Handling Heap Data Structures in Backward Symbolic Execution 11

tains only the mapping from null to 0. The field version map α associates each field
f ∈ F with a non-negative integer representing the current version of its array symbolic
variable. If α[f] = i, the variable is denoted f i. Initially, all fields have the version 0.

heap: (environment η : VR → {0} ∪ Σv, field versions α : F → N0}
ProcessOperationConjHeap(vers, (η, α), op)
1: var ϕ← true, vers′ ← vers, η′ ← η, α′ ← α

2: switch op do
3: case vt ←r vv

4: if η[vt] , undef then
5: if η[vv] = undef then
6: η′ ← η[vv → η[vt], vt → undef]
7: else
8: η′ ← η[vt → undef]
9: ϕ← η[vt] = η[vv]

10: case vt ← (v1 = v2)
11: η′ ← Init(η, v1, v2)
12: vers′ ← vers[vt → vers[vt] + 1]
13: ϕ← vvers[vt]

t = (η′[v1] = η′[v2])
14: case vt ←r new T
15: if η[vt] , undef then
16: η′ ← η[vt → undef]
17: ϕ← η[vt] = FreshN+ ()
18: case vr. f ← vv

19: η′ ← Init(η, vr, vv)
20: α′ ← α[f → α[f] + 1]
21: ϕ← (f α[f] = write(f α

′[f], η′[vr],Symb(η′, vv))) ∧ (η′[vr] , 0)
22: case vt ←s vr. f
23: η′ ← Init(η, vr)
24: vers′ ← vers[vt → vers[vt] + 1]
25: ϕ← (vvers[vt]

t = read(f α[f], η′[vr]) ∧ η′[vr] , 0)
26: case vt ←r vr. f
27: η′ ← Init(η, vr)
28: ϕ← (η′[vr] , 0)
29: if η[vt] , undef then
30: if vt = vr then
31: η′ ← η′[vr → FreshΣv ()]
32: else
33: η′ ← η′[vt → undef]
34: ϕ← ϕ ∧ (η[vt] = read(f α[f], η′[vr]) ∧ read(f in, η′[vr]) ≤ 0)
35: return (ϕ, vers′, (η′, α′))
GetConditionConjHeap(states, n)
1: var inputRefs← gather symbolic variables in η of the heap in states[n]
2: return GetConditionConj(states, n) ∧∧ f∈FR

f α[f] = f in ∧∧v∈inputRefs v ≤ 0

Fig. 5: Heap operation modelling in the conjunct combination approach from Fig. 3

12 Robert Husák, Jan Kofroň, and Filip Zavoral

Let us proceed to the semantics of ProcessOperationConjHeap. The reference as-
signment vt ←r vv distinguishes three cases. If we have not yet encountered vt, it is not
contained in η and we are not interested in any value assigned to it. Otherwise, if we do
not know vv, we associate it with variable2 η[vt]. If both vt and vv are known, we must
assert the equality of their symbolic variables. Eventually, in any case, we must remove
vt from η, because by being assigned to it was effectively removed from the set of in-
put heap references. When comparing two references v1 and v2, we use helper function
Init, which associates them in η with fresh symbolic integer variables, if they are not
already present there. Then, the scalar assignment of boolean term η[vt] = η[vv] to vt

is performed, updating the version of vt in vers accordingly. A new object creation is
again modelled only if we have encountered the target reference variable vt before. Its
symbolic integer variable η[vt] is asserted to be equal with a fresh positive number and
vt is removed from η. A field write vr. f ← vv needs to manipulate α by incrementing
the version of f and using its two distinct versions to express the write. Note that due to
the backward approach of our analysis, the version being written to is the current one.

Again, a field read operation is the most complicated one to model. In both scalar
and reference cases, we use Init to ensure that there is a symbolic integer variable cor-
responding to vr, constrain it not to be equal to null by η′[vr] , 0 and use read to model
the read of the field from the heap. In the scalar case←s, we must also handle the as-
signment into vt by increasing its version in vers. In the reference case←r, when we are
interested in the reference stored in vt, we also use the helper f in array variable enabling
us to constrain the input heap later in GetConditionConjHeap. Note that we also explic-
itly handle the situation when vt = vr in order not to accidentally remove vr from the
environment. MergeHeaps uses the same version map merging as MergeConj utilizing
JoinVers. To merge environments with two or more distinct values corresponding to
one reference variable, it is suitable to randomly pick one of them and constrain all the
others to point to it. In the algorithm, we must avoid introducing unintentional aliases
in the resulting environment.

4.3 Example

To demonstrate the operations on a real-life example, let us examine the assertion in
Fig. 6, which corresponds to inspecting the reachability of the node n13 in the CFG.
Notice that the heap operations from the code were decomposed into the atomic ones,
producing helper variables such as tv, tn or rnv.

The solution using the disjunct propagation approach is depicted in Table 1. Each
row captures the current state of the condition computed for it, starting from n13 and go-
ing backwards to n0. The table is divided into four blocks according to the shape of the
CFG. To simplify the notation, we do not use the s superscripts to denote symbolic vari-
ables, as all the variables in the condition are symbolic. Instead, they are differentiated
by their font, as the program variables from the CFG use a monospaced one.

Since the reachability from n13 to n13 is trivial, the condition starts with true. Next,
to reach it from n12, the condition rv > rnv is added and the field read is performed,
replacing rnv with read(val, rn) and ensuring that rn is not null. The next read into

2 We expect that null cannot be on the left side of the assignment.

Handling Heap Data Structures in Backward Symbolic Execution 13

1 class Node {
2 public int val;
3 public Node next;
4
5 public Node AddSmaller(int v) {
6 Node n = new Node();
7 n.val = v;

8 Node r;

9 if (v < this.val) {
10 n.next = this;
11 r = n;

12 } else {
13 n.next = this.next;
14 this.next = n;
15 r = this;
16 }

17 Assert(r.val <= r.next.val);

18 return r;
19 }

20 }

(a) C# code

start

n←r new Node

n.val←s v

tv←s this.val

n.next←r this

r←r n

tn←r this.next

n.next←r tn

this.next←r n

r←r this

rv←s r.val

rn←r r.next

rnv←s rn.val

true return r

n0

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13 n14

v < tv v ≥ tv

rv > rnv rv ≤ rnv

(b) CFG

Fig. 6: Sample C# code with heap objects and the corresponding CFG

14 Robert Husák, Jan Kofroň, and Filip Zavoral

rn is a reference one; therefore, read(nextin, r) ≤ 0 is added. The helper variable rv is
replaced by its semantics in n10. Notice that if we called GetConditionDisjHeap at this
point, the condition next = nextin ∧ r ≤ 0 would be temporarily added, ensuring that the
input heap consisting of r is separated from the objects potentially created during the
analysis.

In n9, the last node of the else branch, the assignment r ←r this causes the
replacement of r by this. After the field write in n8, read(write(next, this, n), this) is
simplified to n. Notice that now next is not a part of the formula and this and n are
already constrained not to be null, so the operations in n7 and n6 do not have any effects.
The semantics of the positive if branch is similar, as it replaces r by n and then reduces
both occurrences of read(next, n) to this.

Node n3 merges the disjuncts from nodes n6 and n4, adds their respective conditions
and performs the replacement of tv by read(val, this). By the assignment n.val ←s v

in n2, we reduce read(val, n) to v. The creation of new object in n1 replaces n by 1
in both disjuncts, simplifying away the conditions n , 0. Finally, the condition for n0
enhanced with input heap handling is passed to the SMT solver, proving the assertion
by returning UNSAT.

Table 1: The verification of the assertion in Fig. 6 using disjunct propagation
n13 true
n12 rv > read(val, rn) ∧ rn , 0
n11 rv > read(val, read(next, r)) ∧ read(next, r) , 0

∧ read(nextin, r) ≤ 0 ∧ r , 0
n10 read(val, r) > read(val, read(next, r)) ∧ read(next, r) , 0

∧ read(nextin, r) ≤ 0 ∧ r , 0

n9 read(val, this) > read(val, read(next, this)) ∧ read(next, this) , 0
∧ read(nextin, this) ≤ 0 ∧ this , 0

n8, n7, n6 read(val, this) > read(val, n) ∧ n , 0
∧ read(nextin, this) ≤ 0 ∧ this , 0

n5 read(val, n) > read(val, read(next, n)) ∧ read(next, n) , 0
∧ read(nextin, n) ≤ 0 ∧ n , 0

n4 read(val, n) > read(val, this) ∧ this , 0
∧ read(nextin, n) ≤ 0 ∧ n , 0

n3 (v ≥ read(val, this) ∧ read(val, this) > read(val, n) ∧ n , 0
∧ read(nextin, this) ≤ 0 ∧ this , 0)

∨ (v < read(val, this) ∧ read(val, n) > read(val, this) ∧ this , 0
∧ read(nextin, n) ≤ 0 ∧ n , 0)

n2 (v ≥ read(write(val, n, v), this) ∧ read(write(val, n, v), this) > v ∧ n , 0
∧ read(nextin, this) ≤ 0 ∧ this , 0)

∨ (v < read(write(val, n, v), this) ∧ v > read(write(val, n, v), this) ∧ this , 0
∧ read(nextin, n) ≤ 0 ∧ n , 0)

n1, n0 (v ≥ read(write(val, 1, v), this) ∧ read(write(val, 1, v), this) > v
∧ read(nextin, this) ≤ 0 ∧ this , 0)

∨ (v < read(write(val, 1, v), this) ∧ v > read(write(val, 1, v), this) ∧ this , 0
∧ read(nextin, 1) ≤ 0)

Handling Heap Data Structures in Backward Symbolic Execution 15

Table 2 shows how the conjunct combination variant works. As its name suggests,
the assertions created for all the relevant nodes are combined using conjunction. In
order to determine the reachability from n1, we must combine all the conditions in the
table. Notice that for each node ni, there exist an environment ηi, a field version map αi

and a helper ci to express that the control flow reached it.
The semantics of the operations is the same as in the former case, but the con-

struction is different. In general, ηi and αi keep track of the symbolic variables which
represent the current versions of references and fields, respectively. As we can see in
n8, n7, n4 and n2, every field read causes the corresponding αi to create another version
of its corresponding array symbolic variable. Whenever we read an unknown reference,
we create a symbolic integer variable for it, such as in the case of η12. As soon as that
reference is being assigned to, we forget it, e.g. in η11.

Let us have a look on the assignments in n9 and n5. The former one causes all the
usages of this in the else branch to be represented by r, whereas the latter one does
the same in the positive if branch for n. Their versions are properly united after being
merged in n3.

Table 2: The verification of the assertion in Fig. 6 using conjunct combination
n13 c13 =⇒ true η13 = {(null, 0)}

α13 = {(next, 0), (val, 0)}
n12 c12 =⇒ c13 ∧ rv > rnv ∧ rnv = read(val0, rn) ∧ rn , 0 η12 = η13[rn→ rn]
n11 c11 =⇒ η11 = η12[rn→ undef]

c12 ∧ rn = read(next0, r) ∧ r , 0 ∧ read(nextin, r) ≤ 0
n10 c10 =⇒ c11 ∧ rv = read(val0, r) ∧ r , 0 η10 = η11[r→ r]

n9 c9 =⇒ c10 η9 = η10[r→ undef, this→ r]
n8 c8 =⇒ c9 ∧ next0 = write(next1, r, n) ∧ r , 0 η8 = η9[n→ n]

α8 = α13[next→ 1]
n7 c7 =⇒ c8 ∧ next1 = write(next2, n, tn) ∧ n , 0 η7 = η8[tn→ tn]

α7 = α8[next→ 2]
n6 c6 =⇒ η6 = η7[tn→ undef]

c7 ∧ tn = read(next2, r) ∧ r , 0 ∧ read(nextin, r) ≤ 0

n5 c5 =⇒ c10 η5 = η10[r→ undef, n→ r]
n4 c4 =⇒ c5 ∧ next0 = write(next1, r, this) ∧ r , 0 η4 = η5[this→ this]

α4 = α13[next→ 1]

n3 c3 =⇒ η3 = {(null, 0), (this, this), (n, n)}
((c4 ∧ v < tv ∧ next1 = next2 ∧ r = n) α3 = {(next, 2), (val, 0)}
∨ (c6 ∧ v ≥ tv ∧ r = this))

∧ tv = read(val0, this) ∧ this , 0
n2 c2 =⇒ c3 ∧ val0 = write(val1, n, v) ∧ n , 0 α2 = α3[val→ 1]
n1 c1 =⇒ c2 ∧ n = 1 η1 = η3[n→ undef]
n0 c0 =⇒ c1

We can see that in our simple example, the formula resulting from disjunct prop-
agation is much shorter than the one from conjunct combination. However, in case of

16 Robert Husák, Jan Kofroň, and Filip Zavoral

larger programs with more branches, the number of disjuncts can grow in an exponen-
tial manner if we do not simplify them efficiently.

5 Evaluation

We implemented the techniques into a development version of AskTheCode, an open-
source tool for backward symbolic execution of C# code, which uses Z3 as the SMT
solver. In order to compare the efficiency of the aforementioned approaches, we pre-
pared a simple program which can be parametrized so that its complexity and validity
of the assertions can vary. Degree counting(a, b) is an algorithm receiving a linked list
as the input. Each of its nodes contains an additional reference to another node and the
algorithm calculates for each node its in-degree: the number of nodes referencing it.
The assertion fails if it encounters a node whose in-degree is greater than its zero-based
index in the list and also greater than a given number a. The second parameter b spec-
ifies the number of loop unwindings, i.e., the number of nodes inspected from the start
of the list. As a result, the assertion is refutable if and only if a + 2 ≤ b. Increasing
b produces a larger CFG with also potentially more complicated conditions, but the
counterexample might be easier to find due to a larger number of paths corresponding
to it.

The execution time of analysis of each input variant is shown in Table 33. Notice that
there are multiple approaches both to disjunct propagation Disj and to conjunct combi-
nation Conj. Because we considered creating a custom implementation of term simpli-
fication and efficient representation too complex, we decided to use the well-optimized
terms available in the API of Z3. DisjSet uses a set of Z3 terms to represent the disjuncts
in each state. Their uniqueness is ensured by the hash consing implemented in Z3. The
simplification is performed for each term separately. On the other hand, DisjZ3 repre-
sents each state using a Z3 term; merging is performed by creating a disjunction of all
the terms in the dependent nodes. DisjComb is a combination of the two approaches. A
state is represented as a Z3 term set, but the merging is performed by creating a disjunc-
tion term and putting it as a single item of the set. In ConjNever, DoSolve always returns
false, so no intermediate calls of the SMT solver are performed. An opposite extreme
is ConjAlways, where DoSolve always returns true. In ConjLoops, true is returned only for
entry nodes of loops. The underlying solver is used incrementally, which enables it to
reuse the information gained during the previous checks.

The results show that for our problem, conjunct combination was more efficient than
disjunct propagation. The best times were obtained for ConjNever, where the SMT solver
was called only once at the very end of the analysis. However, in case of more com-
plicated examples where an early check may prevent the analysis from inspecting large
regions of code, the incremental usage of the SMT solver might be useful. The results
of ConjAlways show that it is unnecessary and inefficient to call it on every operation,
as it causes an overhead of more than 250% on average. Instead, when we carefully
select the nodes where to perform these additional checks like we did in ConjLoops, the
overhead is less than 25% on average.

3 We conducted the experiments on a desktop with an Intel Core i7 CPU and 6GB RAM.

Handling Heap Data Structures in Backward Symbolic Execution 17

Table 3: Performance evaluation, the times are in milliseconds
Test Case DisjSet DisjZ3 DisjComb ConjNever ConjAlways ConjLoops

Degree counting (0, 3) 298 775 668 18 55 20
Degree counting (1, 3) 302 773 688 21 60 26
Degree counting (2, 3) 284 752 675 15 59 20
Degree counting (1, 4) 2062 1225 791 31 119 46
Degree counting (2, 4) 2075 1152 822 43 121 53
Degree counting (3, 4) 1949 874 754 25 115 32
Degree counting (2, 5) 13334 1856 1287 91 242 102
Degree counting (3, 5) 13381 1947 1360 85 232 99
Degree counting (4, 5) 13226 1764 1125 40 246 50
Degree counting (3, 6) 81282 4728 4052 200 469 219
Degree counting (4, 6) 80853 4566 4214 161 427 178
Degree counting (5, 6) 80915 3116 2364 62 390 78

We believe that implementing a custom well-optimized simplifier will lead a sub-
stantial performance improvement of disjunct propagation, as achieved in the case
of Snugglebug [7]. However, writing such a simplifier might be a challenging feat,
whereas the utilization of incremental solving can efficiently move the problem to a
well-optimized SMT solver.

6 Related Work

The disjunct propagation approach originates from Snugglebug [1], a tool using weak-
est preconditions to assess the validity of assertions in Java code. Snugglebug uses the
algorithm for intraprocedural analysis, utilizing a custom-made simplifier over the prop-
agated disjuncts. For interprocedural analysis, various other methods are used, such as
directed call graph construction or tabulation. The SMT solver is utilized only at the
entry point, as many infeasible paths are rejected using the simplifier. The conjunct
combination approach is used in UFO [1] as the under-approximation subroutine. UFO,
however, does not handle heap objects.

Microsoft Pex [18] is a tool generating unit tests for .NET programs using dynamic
symbolic execution. It executes the program with concrete inputs and observes its be-
haviour, using the Z3 SMT solver to generate new inputs steering the execution to un-
covered parts of the code. It also uses the array theory to model heap operations, but the
way it works with the input heap is different from our pure symbolic approach.

KLEE [6] is a symbolic virtual machine utilizing the LLVM [13] infrastructure,
used mainly for C and C++ projects. It uses array theory not only to reason about heap
operations, but also about pointers, low-level memory accesses, etc. This differs from
our approach, because we target only higher level languages with reference semantics,
without the usage of pointers. Furthermore, KLEE does not support running symbolic
execution backwards.

Symbolic execution tools JBSE [5] and Java StarFinder (JSF) [14] both employ
lazy initialization to reason about heap objects, which lazily enumerates all the possible

18 Robert Husák, Jan Kofroň, and Filip Zavoral

shapes of the heap. They differ by the languages used for specification of the heap ob-
jects’ invariants. Whereas JBSE uses custom-made HEX, JSF utilizes separation logic.
Although we use a different approach for the core of the heap operations, taking heap
invariants into account might help us to prune infeasible paths and save resources.

7 Conclusion

In this paper, we focused on the task of demand-driven program analysis by studying
methods of efficiently implement backward symbolic execution. We identified two main
approaches used for the core algorithm, namely disjunct propagation and conjunction
combination. The former one has the benefit of easier implementation and creating
potentially simpler conditions passed to an SMT solver, while the latter one is more
predictable in terms of the resulting condition size and can better utilize incremental
SMT solvers. To handle heap operations in both approaches, we use the theory of arrays,
paying attention to properly handle the notion of an input heap throughout the analysis.
The evaluation on our code examples shows that the effort put into the implementation
of the conjunct combination approach is reasonable, because its results exceeded the
straightforward implementation of disjunct propagation in an order of magnitude.

Due to the narrow focus of this work, the application of our technique is currently
limited mainly by the inability to soundly handle loops, interprocedural calls and recur-
sion. Our future work will mainly focus on removing these limitations by exploring the
possibilities of computing and reusing procedure summaries, possibly learning from
infeasible paths using interpolants. We will build on our knowledge of how disjunct
propagation and conjunct combination perform in different circumstances, combining
them to reach a valuable synergy.

Acknowledgements

This work was supported by the project PROGRESS Q48, the Czech Science Founda-
tion project 17-12465S the grant SVV-2017-260451.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: TACAS (2012). https://doi.org/10.1007/978-3-642-28756-5 12

2. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of symbolic
execution techniques. ACM Computing Surveys (CSUR) 51(3), 50 (2018)

3. Bjørner, N.: Engineering theories with z3. In: Yang, H. (ed.) Programming Languages and
Systems. pp. 4–16. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

4. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with Appli-
cations to Verification. Springer-Verlag, Berlin, Heidelberg (2007)

5. Braione, P., Denaro, G., Pezzè, M.: Jbse: A symbolic executor for java programs with com-
plex heap inputs. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 1018–1022. ACM (2016)

Handling Heap Data Structures in Backward Symbolic Execution 19

6. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementa-
tion. pp. 209–224. OSDI’08, USENIX Association, Berkeley, CA, USA (2008),
http://dl.acm.org/citation.cfm?id=1855741.1855756

7. Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: A powerful approach
to weakest preconditions. SIGPLAN Not. 44(6), 363–374 (Jun 2009),
http://doi.acm.org/10.1145/1543135.1542517

8. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory and
Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 337–340. TACAS’08/ETAPS’08, Springer-Verlag,
Berlin, Heidelberg (2008), http://dl.acm.org/citation.cfm?id=1792734.1792766

9. Dinges, P., Agha, G.: Targeted test input generation using symbolic-concrete backward ex-
ecution. In: 29th IEEE/ACM International Conference on Automated Software Engineering
(ASE). ACM, Västerås, Sweden (September 15-19 2014)

10. Goel, A., Krstić, S., Fuchs, A.: Deciding array formulas with frugal axiom in-
stantiation. In: Proceedings of the Joint Workshops of the 6th International Work-
shop on Satisfiability Modulo Theories and 1st International Workshop on Bit-Precise
Reasoning. pp. 12–17. SMT ’08/BPR ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1512464.1512468

11. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Notices 39, 92–106 (12 2004).
https://doi.org/10.1145/1028664.1028717

12. Husák, R., Kofroň, J., Zavoral, F.: Askthecode: Interactive call graph exploration for error
fixing and prevention. Electronic Communications of the EASST (in press)

13. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis & trans-
formation. In: Proceedings of the International Symposium on Code Generation and Opti-
mization: Feedback-directed and Runtime Optimization. pp. 75–. CGO ’04, IEEE Computer
Society, Washington, DC, USA (2004), http://dl.acm.org/citation.cfm?id=977395.977673

14. Pham, L.H., Le, Q.L., Phan, Q.S., Sun, J., Qin, S.: Testing heap-based programs with java
starfinder. In: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings. pp. 268–269. ACM (2018)

15. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (May 2002). https://doi.org/10.1145/514188.514190,
http://doi.acm.org/10.1145/514188.514190

16. Sinha, N., Singhania, N., Chandra, S., Sridharan, M.: Alternate and learn: Finding witnesses
without looking all over. In: Proceedings of the 24th International Conference on Com-
puter Aided Verification. pp. 599–615. CAV’12, Springer-Verlag, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 42, http://dx.doi.org/10.1007/978-3-642-31424-
7 42

17. Sridharan, M., Chandra, S., Dolby, J., Fink, S.J., Yahav, E.: Aliasing in object-oriented
programming. chap. Alias Analysis for Object-oriented Programs, pp. 196–232. Springer-
Verlag, Berlin, Heidelberg (2013), http://dl.acm.org/citation.cfm?id=2554511.2554523

18. Tillmann, N., De Halleux, J.: Pex: White box test generation for .net. In: Proceedings of the
2Nd International Conference on Tests and Proofs. pp. 134–153. TAP’08, Springer-Verlag,
Berlin, Heidelberg (2008), http://dl.acm.org/citation.cfm?id=1792786.1792798

AuthCheck: Program-state Analysis for

Access-control Vulnerabilities

Goran Piskachev1, Tobias Petrasch2, Johannes Späth1, and Eric Bodden1,3

1 Fraunhofer IEM, Germany
{goran.piskachev,johannes.spaeth}@iem.fraunhofer.de

2 BCG Platinion, Germany
petrasch.tobias@bcgplatinion.com

3 Paderborn University, Germany
eric.bodden@upb.de

Abstract. According to security rankings such as the SANS Top 25 and
the OWASP Top 10, access-control vulnerabilities are still highly rele-
vant. Even though developers use web frameworks such as Spring and
Struts, which handle the entire access-control mechanism, their imple-
mentation can still be vulnerable because of misuses, errors, or incon-
sistent implementation from the design speci�cation. We propose Au-
thCheck, a static analysis that tracks the program's state using a �nite
state machine to report illegal states caused by vulnerable implementa-
tion. We implemented AuthCheck for the Spring framework and iden-
ti�ed four types of mistakes that developers can make when using Spring
Security. With AuthCheck, we analyzed an existing open-source Spring
application with inserted vulnerable code and detected detected the vul-
nerabilities.

Keywords: static analysis, access control, authentication, authoriza-
tion, web systems, security

1 Introduction

With increasing popularity and amount of processed data, web applications are
attractive targets for attackers. The access-control vulnerabilities are still ones
of the most relevant as rankings show. For instance, �ve of the SANS Top 254

most dangerous vulerabilities are related to access-control. On the OWASP Top
105 ranking, on place two is broken authentication vulnerability and on place
�ve is broken authorization vulnerability.

Nowadays, web frameworks are heavily used by software developers [19].
Modern frameworks, such as Spring 6 and Struts. 7 provide mechanism for access-
control making developers' implementation e�ort smaller. At runtime, the actual

4 https://cwe.mitre.org/top25/
5 https://www.owasp.org/index.php/Top_10-2017_Top_10
6 https://spring.io/
7 https://struts.apache.org/

2 Piskachev et al.

access-control checks of such mechanism are performed within frameworks' code,
hereby software developers do not need to write customized access-control code
and implementation bugs are avoided.

Instead of writing access-control code manually, frameworks allow software
developer to specify the access rules via framework speci�c APIs. Spring, for in-
stance, provides a �uent interface with speci�cation language SpEL [3] combined
with Java annotations to allow the speci�cation of access rules.

However, implementing the access-control rules using the frameworks APIs
according to a design speci�cation, created by the software architect, remains
a challenging task. The access-control is often a combination of annotations of
methods, a speci�cations in a con�guration class, and a set of permission groups
for the resources of the system (i.e., URI). The resulting access control of the
implementation easily diverges from the design speci�cation and the application
may accidentally grant an unauthorized user access to con�dential data.

In this paper, we propose a typestate-inspired analysis for detecting three
access-control vulnerabilities:

� CWE-306 missing authentication [8] - The system does not perform an iden-
tity check on a request to a resource which by design should be accessed only
be identi�ed requests.

� CWE-862 missing authorization [9] - The system does not perform a check
whether an authenticated request has the correct rights to access a resource.

� CWE-863 incorrect authorization [7] - The system performs an authorization
check on the resources, but this check is wrong.

Our static analysis uses �nite state machines (FSMs) of each vulnerability to
track the authorization state of the program. The state changes are triggered
by method calls that authorize the user or access a critical resource along the
control �ow paths.

The main contributions of this paper are:

� AuthCheck: a program-state analysis for access-control vulnerabilities,
� an implementation of AuthCheck for the Spring Security framework,
� a running example and four typical errors in Spring Security, and
� a case study demonstrating the applicability of the implementation.

The following section introduces our running example within the Java Spring
framework. In Section 3, we provide background information and de�nitions for
the AuthCheck approach, which is then introduced in Section 4. Implementa-
tion details are discussed in Section 5. A case study and limitations are discussed
in Section 6.

2 Running Example

As running example consider a minimal web-application that helps a user to
organize her tasks. An anonymous user browsing the web application must only
see the web applications version number. A user that is authenticated can view

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 3

tasks assigned to herself. An administrator (group ADMIN) can create new tasks
for a particular user.

Table 1 details the design speci�cation of the web-application's REST-API [10].
The speci�cation maps the URI of an incoming request to the actual API method
which shall be invoked to process the incoming request. Table 1 additionally de-
tails the permissions required for each request. A software architect speci�es
these requirements and hands them to a software developer.

Table 1: Speci�cation resources and access rules in the running example
HTTP URI Resource Description Access rule
GET /version version() Returns application's version. No rule
GET /pro�le pro�le() Returns user pro�le. Authenticated
GET /task retrieveAll() Returns list of all tasks. USER or ADMIN

CREATE /task create() Creates new task. ADMIN

Spring-based Implementation The software developer uses the Spring framework[1]
to implement the software as speci�ed. Spring provides a security component [2]
that ships with a mechanism for access control of resources. Spring handles re-
quests from users via chain of �lters (chain of responsibility design pattern [11]).
The requests are matched and processed based on their URIs.

1 public class WebSecurityConfig extends

WebSecurityConfigurerAdapter {

2 @Override

3 protected void configure(HttpSecurity http) throws

Exception {

4 http.csrf().disable ().sessionManagement ()

5 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)

6 .and().authorizeRequests ()

7 .antMatchers(HttpMethod.GET , "/version").permitAll ()

8 .antMatchers(HttpMethod.GET ,

"/task").access("hasAnyRole('USER ', 'ADMIN ')")

9 .antMatchers(HttpMethod.CREATE , "/task").hasRole("USER")

10 .antMatchers(HttpMethod.GET ,

"/profile").authenticated ().and().httpBasic ();

11 }}

Listing 1.1: Resource and access-control con�guration of the running example
implemented with Spring Security

Listing 1.1 shows the implementation of Table 1 using Spring Security. By
the use of a �uent interface the developer can implement the chain of �lters that

4 Piskachev et al.

is applied upon each incoming request at runtime. Each �lter is created through
the method antMatcher(..) de�ned by the HTTP method and the URI of the
resources which that �lter can process. The permitAll() method allows any
request to access the resource. The authenticated(..) method creates a �lter
that restricts the incoming request to the one where the useer is authenticated.
The hasRole(..) method allows access to the resource by any request that has
the role of the speci�ed group. The access(...) method evaluates the speci�ed
argument which has to be de�ned in the Spring Expression Language (SpEL)
[3], and when evaluated to true, allows the corresponding request to access the
resource.

The implementation has inconsistency with the speci�cation. The software
developer erroneously allowed basic users (USER) to create new tasks as opposed
to restricting the action to ADMIN s only. AuthCheck detects the deviation
from the speci�cation automatically.

3 Background and De�nitions

3.1 Typestate Analysis and Program-state Analysis

Typestate analysis [20] is a data-�ow analysis that can detect invalid states
of objects from the code being analyzed. The analysis uses speci�cation of all
possible states of the object, typically expressed as �nal state machine (FSM).
For example, using the FSM of the type java.io.FileWriter, in a given program,
the analysis can report if any object of type java.io.FileWriter is not closed
at the end of the program. Another example is CogniCrypt [13], a typestate
analysis for detecting API misuses of cryptographic libraries.

To detect access-control vulnerabilities, such as CWE-306 [8], CWE-862 [9],
and CWE-863 [7], we designed a program-state [5] [12] analysis. Similar to the
typestate analysis, the program-state analysis uses FSM to track the states, not
of single objects, but the state of the program. Figure 1 shows the FSM that
models the program states when detecting CWE-306 . Based on our running ex-
ample (Section 2), the acm() (authentication-critical method) is replaced by one
of the resources, e.g. pro�le(). The legal states are NA (not authenticated) and
A (authenticated). The init() transition models the entry point of the analysis,
which in this case is the arrival of a request from a user. If the request is for the
resource pro�le(), the application has to make sure that the call to the method
authenticate() from Spring was successfully called before. This is modeled by the
transition with label authenticate(). If this transition was �red, the state of the
FSM will be changed from NA to A. In case, the implementation of the appli-
cation does not contain a call to the method authenticate(), when the resource
pro�le() is requested, the FSM will go to the state CWE-306, which models an
illegal state and this can be reported.

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 5

NA A

CWE306

init() authenticate()

acm()
acm()

Fig. 1: FSM for missing authentication CWE-306

3.2 De�nitions

Before we introduce the AuthCheck approach (Section 4), we de�ne the term
web application. In the following, we introduce the required terms. A user is a
client program, e.g. web browser, that can send requests to the server.

De�nition 1. Authorization group
Authorization group g is boolean characteristic of a user u with a unique name
and access rights. A user can belong to more authorization groups. The set of all
authorization groups is G:

G = {gi | gi is an authorization group, 1 ≤ i ≤ m, m ∈ N}

The function userGroups : U → Pow(G) maps each user u ∈ U to the au-
thorization groups. Pow(G) is the power set of G. We de�ne the help function
hasRole : U×G→ B, that expresses whether a user u belongs to an authorization
group g: hasRole(u, g) := g ∈ userGroups(u)

Each user that is authenticated in the system belongs to the special autho-
rization group ANONYMOUS.

Authorization formula is a boolean formula a, formed by the function has-
Role, true, false, and the operators ∨,∧,¬.

De�nition 2. Resource
An authentication and authorization critical resource is a 4-tuple r = (m, p, s, a),
where m is HTTP method, p is URI, s is a method signature, and a is an au-
thorization formula that de�nes the access rule of the resource. Access to the
resource is given when a is evaluated to true for a request of a user u. Users
identify each resource with the URI p and the HTTP method m. The corespond-
ing method in the system is identi�ed by the signature s.

De�nition 3. Web application
A web application W , is 2-tuple W = (R,G) , where R is a set of resources and
G is a set of authorization groups.

6 Piskachev et al.

Example The web application from Section 2 has the authorization groups AD-
MIN, for administrators and USER, for basic users. By default, it also has
the ANONYMOUS group. Thus, G = {ANONYMOUS,ADMIN,USER}.
The set of resources has 4 elements (Table 1). The �rst resource is de�ned as
r1 = (GET, /version,String version(), a1), where a1(u) = true.

We consider a user u with userGroups(u) = {ANONYMOUS,USER}. If
this user requests the resource r1, the access will be allowed because a1(u) =
true. However, a request to the resource r4 will be denied because a4(u) =
hasRole(u,ANONYMOUS) ∧ hasRole(u,ADMIN) = false.

4 Approach

We present AuthCheck, a program-state analyis for detecting three access-
control vulnerabilities, CWE-306 , CWE-862 , and CWE-863 . The analysis uses
a call graph of the program (deatailed in Subsection 5.2) and an access-control
speci�cation model (ACSM), like the one in Table 1. ACSM is de�ned as a
web application S = WS , where WS = (RS , GS) (De�nition 3). ACSM can be
created manually by software architects or automated from requirements and
design speci�cations. Either way, we assume that the following information is
available: resource API, URI, and access rule, that is aware of the autorization
groups in the system.

AuthCheck checks whether the call graph con�rms the ACSM by checking
each path from the call graph. To extract all paths, the depth �rst search DFS
algorithm is used. AuthCheck uses FSM for each vulnerability, e.g. Figure 1.
Algorithm 2 shows the tracking of each path with the FSM. The FSM starts in
the initial state (e.g. NA in Figure 1) and for each node of the path a new state
of the FSM is calculated (line 4 in Algorithm 2). If an error state is reached (e.g.
CWE-306 in Figure 1), a new vulnerability will be reported.

For each path, the function DetectVuln is called which is de�ned by Algorithm
2. DetectVuln uses the FSM to analyse the path.

Algorithm 1 Check the call graph against vulnerabilities

1: function CheckCallGraph(CallGraph, FSM)
2: Paths← DFS(CallGraph)
3: V ul← ∅
4: for each p ∈ Paths do
5: V ul← V ul ∪DetectVuln(p, FSM)

6: return V ul

The complexity of Algorithm 1 is O(|V | + |E| + |P | · T (DetectVuln)),
where V is the number of nodes, E is the number of edges, and P is the number
of paths in the call graph. In DetectVuln, every node of the path is analyzed,
resulting in O(|P |). The worst case path is the one with all nodes from the call

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 7

Algorithm 2 Checking each path against vulnerabilities

1: function DetectVuln(Path, FSM)
2: v ← FSM→init()
3: for each n ∈ Path do

4: v ← FSM→nextState(n)
5: if v ∈ FSM.ERROR_STATES then

6: return new V ulnerability(v)

7: if v ∈ FSM.NOT_ERROR_STATES then

8: return new V ulnerability(v)

9: return ∅

graph |V |. Additionally, the number of paths in the worst case is |E|. Thus, the
total complexity of Algorithm 1 is

O(|V |+ |E|+ |P | · |V |) = O(|V |+ |E|+ |V | · |E|) = O(|V | · |E|)

In the following, we discuss the three the FSM used by AuthCheck.

Missing Authentication A program is vulnerable to CWE-306 when an authentication-
critical method (acm()) can be accessed by user that has not been authenticated
before. AuthCheck models this vulnerability as shown in Figure 1. Authenti-
cation critical methods are all resources that in the ACSM have an access rule
that requires authentication. The error state in Figure 1 is reached when an
authentication-critical method is processed next in a given path and the current
state of the FSM is NA (not authorized). In this case, the program-state analysis
will create a vulnerability (Algorithm 2, line 8).

Missing Authorization and Incorrect Authorization CWE-862 occurs in a given
program when a non-authorized user u can request an authorization-critical
method (azcm()). If the user is authorized but the belonging group g does not
con�rm the access rule for that authorization-critical method as speci�ed in
the ACSM (hasRole(u, g) = false), then incorrect authorization occurs (CWE-
863). Figure 2 shows the FSM that AuthCheck uses to model CWE-862 and
CWE-863 . The transitions with the label azcm() without an argument denote
calls to an authorization-critical method when the user is not authorized. When
there is an argument g, the user has been authorized and the belonging group
is being checked. This happens in state A2. When the user's group evaluates
to true the self transition of state A2 is �red, otherwise the transition to state
CWE-863 is �red. AuthCheck performs a group hierarchy check.

Strategies for detecting critical methods The transitions acm() in Figure 1 and
azcm() in Figure 2 denote an authentication-critical and authorization-critical
method. These methods correspond to the resources de�ned in the ACSM. In
the following, we discuss AuthCheck's strategies for detecting these methods
in the call graph.

8 Piskachev et al.

NA A1 A2

CWE862 CWE863

init() authenticate()

azcm()
azcm()

authorize()

azcm(g)

azcm(g)

Fig. 2: FSM for missing authorization CWE-862 and incorrect authorization
CWE-863

Algorithm 3 Identifying methods as authentication-critical

1: function isMethodAuthenticationCritical(R, s′)
2: for each r ∈ R do

3: if rs = s′ then
4: return true
5: return false

In the case of CWE-306 , the authentication-critical methods are detected by
iterating the set of all resources R from the ACSM for each method M that is
currently processed in the path. The complexity for this strategy is O(|M | · |R|).

Algorithm 4 shows the AuthCheck strategy to identify the authentication-
critical methods in the call graph for CWE-862 . When checking the CWE-862 ,
each method M currently processed in the path is classi�ed as authorization-
critical if the method is contained in the ACSM as a resource and the access rule
is not tautological. The evaluation of the authorization formula depends on the
number of relevant authorization groups used in the authorization formula. For
the calculation, all possible combinations ∀ g ∈ Pow(G′) of relevant authoriza-
tion groups G′ must be evaluated. For a worst-case authorization formula with
|G| authorization groups, the resulting complexity is O(|M | · |R| · 2|G|).

Algorithm 5 shows the AuthCheck strategy to identify the authorization-
critical methods in the call graph. For each resource in the ACSM, it checks
whether its signature matches the signature of the method M currently pro-
cessed in the call graph. In addition, the authorization formulas are checked.
The runtime depends on the number of relevant authorization groups. For the
calculation, all possible combinations ∀ g ∈ Pow(G′) of relevant authorization
groups G′ must be evaluated. For a worst-case authorization formula with |G|
authorization groups, the resulting complexity is O(|M | · |R| · 2 · 2|G|).

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 9

Algorithm 4 Identifying methods as authorization-critical

1: function isMethodAuthorizationCritical(R, s′)
2: for each r ∈ R do

3: if rs = s′ and ra is not tautological then
4: return true
5: return false

Algorithm 5 Identifying methods as authorization-critical and group-belonging

1: function isMethodAuthorizationCritical(R, s′, a′)
2: for each r ∈ R do

3: if rs = s′ and eval(ra) = eval(a′) then
4: return true
5: return false

5 Spring Security AuthCheck

We implemented the AuthCheck concept from Section 4, as a Java application
that checks the implementation of a given Java Spring Security application and a
given ACSM. We used the Soot framework [14] for the analysis. In the following,
we discuss the architecture of our implementation, the insights of the call graph
construction, and the four typical developer's mistakes with Spring Security that
AuthCheck can detect. Our implementation is available on Github [18].

5.1 Architecture

The AuthCheck tool follows a pipeline architecture, since it consists of several
sequential phases that work on shared artifacts. Our AuthCheck implementa-
tion consists of 3 phases:

1. Call graph construction: parses the code, the Spring Security con�guration,
and annotations, and constructs the call graph,

2. Call graph update: patches missing edges into the call graph based on Spring
Security con�guration,

3. CWE analysis: analyzes the call graph against CWE-306 , CWE-862 , and
CWE-863 based on Section 4.

The design an extendable architecure of the tool. Figure 3 shows the meta-
model of the main components of the tool. The root class is the Analysis that
contains all components. The Phase can process objects of type Artifact. In
our implementation, the call graph instance, FSMs, and ACSM are de�ned as
artifacts. The �nal results of the analysis are stored in a Result object which can
be presented via Presenter object. Our tool has one presenter, that generates
HTML pages (see Section 6 and Figure 4). In this architecture new phases can be
added easily. Furthermore, new types of vulnerabilities can be created as FSM
and added as artifacts in the analysis.

10 Piskachev et al.

Fig. 3: UML class diagram of AuthCheck implementation for Spring Security

5.2 Call Graph Construction

Phase 1 constructs the call graph using the class hierarchy algorithm and extracts
the Spring Security con�guration needed in phase 2 to complete the missing
edges in the call graph due to re�ection. The extracted information is prepared
according to De�nition 3. Each critical method is annotated with its URI and
HTTP method. This is transferred together with the signature of the method
into a resource according to the De�nition 2.

The Spring Security con�guration is extracted from the program using an
intraprocedural analysis. A special case is the method access(a), which can take
as an input a SpEL formula. For this, we use the Spring mechanism to evaluate
the string values containg the SpEL formula.

An authorization formula is assigned to a resource when the de�ned �lter
matches the method and the URI. If multiple authorization formulas are applied
to a resource, they are associated with a logical AND (∧).

The extracted information is stored as web application (De�nition 3). Then,
in phase 2, the missing edges are added to the call graph according to Algo-
rithm 6. The algorithm gets the extracted web application WJ and generated
call graph CallGraph. For each resource, it is checked whether the Spring Frame-
work performs an authorization check, authentication check, or no access check.
Accordingly, an edge is created to the critical method from the authorize(), au-
thenticate(), or init() methods.

Algorithm 6 Adding missing edges in the call graph

1: function createMissingEdges(WJ = (RJ , GJ), CallGraph)
2: for each r ∈ RJ do

3: if isMethodAuthorizationCritical(RJ , rsig) then
4: CallGraph→addEdgeFromAuthorize(rsig)
5: else if isMethodAuthenticationCritical(RJ , rsig) then
6: CallGraph→addEdgeFromAuthenticate(rsig)
7: else

8: CallGraph→addEdgeFromInit(rsig)

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 11

5.3 Developers' mistakes

As demonstrated in Listing 1.1, the access-control rules in Spring Security are
speci�ed with the SpEL �uent interface. With this approach, we foresee two
factors that can lead to inconsistencies of the implementation and the intended
design. First, the developer should be familiar with the domain speci�c language
SpEL in order to specify the antMatchers correctly, i.e. in the correct order. Sec-
ond, the string values of some of the arguments are not parsed and automatically
checked. Based on that, we identi�ed 4 mistakes that developers can make when
using Java Spring Security.

Missing or wrong authentication rule: The developer forgets to include the
authentication �lter authenticated() for the URI of a particular resource in the
con�guration or uses the �lter permitAll() to incorrectly allow access to all users.
However, in the speci�cation model, the resource requires valid authentication.
If no �lter is speci�ed, this is equivalent to the �lter permitAll(). As a result, any
user without authentication is able to request this resource. The error causes the
security vulnerability missing authentication CWE-306 .

Missing authorization rule: The developer forgets to include one of the autho-
rization �lters hasRole(role) or access(rule) for the URI of a particular resource.
However, according to the ACSM, the resource requires a valid authorization.
The �lter authenticated() leads to the same error because it only checks the au-
thentication of the user. Depending on the �lter used, either all users or only
authenticated users are able to request this resource. The error causes the secu-
rity vulnerability of missing authorization CWE-862 .

Incorrect authorization rule: The developer incorporates an authorization
�lter hasRole(role) or access(rule) for the URI of a certain resource, but a wrong
authorization formula is used. As a result, a user without the required access
rights is able to request this resource. The error causes the security problem of
incorrect authorization CWE-863 .

Method call with higher access rights: The developer creates a correct con-
�guration for the resource, but in a deeper layer of the application, a call to a
method is created that requires higher access rights and therefore should not be
called by the user. The error causes the security problem of incorrect authoriza-
tion CWE-863 .

We implemented an extended version of the running example from Section
2 that includes the four mistakes and serves as a test scenario for our imple-
mentation. It is available under [18]. The tool generates a HTML page with all
vulnerabilities detected. Figure 4 shows a detected CWE-306 in our running
example, including the path and description for solving the issue.

6 Case Study

We used the open-source project FredBet8 to perform a case study that demon-
strates the applicability of our analysis.

8 https://github.com/fred4jupiter/fredbet

12 Piskachev et al.

Fig. 4: Screenshot from AuthCheck generated output with CWE-306

6.1 FredBet

The web application FredBet is a football betting system developed with Java
Spring Boot and Spring Security. FredBet o�ers the possibility to initiate an
online football bet with several users. In addition to the betting, the web appli-
cation o�ers statistics about the matches, rankings, a pro�le management, and
many other functions. The application is actively developed since 2015 and as
of July 2019, it's repository has more than 1300 commits.

Since we have access only to the implementation and no design speci�cation
is available from which we can infer an ACSM, we decided to create the ACSM
based on the implementation and insert the four types of mistakes discussed
in Subsection 5.3. We focused on the AdminController from FredBet and made
code modi�cations. AuthCheck analyzed the AdminController and detected
the inserted vulnerabilities.

6.2 Limitations

When applying AuthCheck to FredBet, we realized that the speci�cation scope
in Spring Security is much broader than the available documentation. This means
that there are many ways to specify the same con�guration information when
one develops an application. For example, a developer can specify an URI for
a given class containing critical methods. This URI is then concatenated to the
URIs of the critical methods it contains. Then, the annotations can have di�erent
formats or even some can be skipped, like the HTTP method, which in such case,
a default value GET will be considered by the framework. The con�guration of
the antMathers (see Listing 1.1) can have di�erent parameters. Such broad scope
of speci�cation options, is currently not supported by the AuthCheck parser.
Even though, this is a technical disadvantage, in order to prepare AuthCheck
for more complex web applications, the parser needs to be extended.

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 13

7 Related Work

Security vulnerabilities caused by the misuses of access-control mechanisms have
been investigated by Dalton et al. [6]. The approach examines access-control
problems by analyzing the �ow of user credentials within the web application.
In contrast to AuthCheck, their approach is dynamic and can not be used for
early detection of the vulnerabilities.

Sun et al. [21] introduced a static analyis approach for the detection of access-
control vulnerabilities. They assume that the source code contains implicit doc-
umentation of intended accesses. From this, sitemaps for di�erent authorization
groups are generated and checked whether forced browsing can happen. Another
static analysis speci�c for access-control of XML documents was introduced by
Murata et al. [16]. They use XPath representation for the access-control rules
and XQuery for specifying the requests. The analysis checks all paths de�ned
by the query against the XPath rules. Naumovich et al. [17] proposed a static
analysis for Java EE applications where the resources are security �elds from
the Java Beans objects.

In the area of model checking, few approaches address the access-control
protocols [15] [22]. In these approaches, the focus is to validate the message
communication of the de�ned protocols. Similarly, Alexander et al. applied model
checking to verify the authentication mechanism in the comminication of a set
of interacting virtual machines [4].

8 Conclusion and Future Work

Even though sophisticated Java web frameworks, such as Spring, provide se-
cure mechanism for access control of resources, for many developers using the
APIs and the con�guration speci�cations correctly, can be challenging. Thus,
these misuses may cause access-control vulnerabilities in the code. In this paper,
we presented AuthCheck, a static analysis, that tracks the program-state to
detect the vulnerabilities CWE-306 , CWE-862 , and CWE-863 . Based on �nite
state machine speci�cation of each vulnerability, AuthCheck checks each path.
We implemented the approach on top of the Soot framework and applied it to
one open-source project on which we detected four types of errors that were
previously inserted in the existing application.

We plan to evaluate the precision of AuthCheck in cooperation with indus-
try to overcome the problem of the open-source projects of not having a design
speci�cation on which we can check the implementation against. Additionally,
in future the choice of the call graph algorithm should be evaluated.

References

1. Spring framework, java spring. https://spring.io/projects, online; accessed 9
March 2019

14 Piskachev et al.

2. Spring framework, java spring security. https://spring.io/guides/topicals/

spring-security-architecture, online; accessed 9 March 2019
3. Spring framework, spring expression language. https://docs.spring.io/spring/

docs/5.0.5.RELEASE/spring-framework-reference/core.html, online; accessed
12 March 2019

4. Alexander, P., Pike, L., Loscocco, P., Coker, G.: Model checking distributed manda-
tory access control policies. ACM Trans. Inf. Syst. Secur. 18(2), 6:1�6:25 (Jul 2015)

5. Ball, T., Rajamani, S.K.: The slam project: Debugging system software via static
analysis. In: Proceedings of the 29th ACM SIGPLAN POPL. pp. 1�3. POPL '02,
ACM, New York, NY, USA (2002)

6. Dalton, M., Kozyrakis, C., Zeldovich, N.: Nemesis: Preventing authentication and
access control vulnerabilities in web applications. In: Proceedings of USENIX. pp.
267�282. SSYM'09, USENIX Association, Berkeley, CA, USA (2009)

7. Enumeration, C.C.W.: Incorrect authorization. https://cwe.mitre.org/data/

definitions/863.html, accessed 12 March 2019
8. Enumeration, C.C.W.: Missing authentication for critical function. https://cwe.

mitre.org/data/definitions/306.html, accessed 12 March 2019
9. Enumeration, C.C.W.: Missing authorization. https://cwe.mitre.org/data/

definitions/862.html, accessed 12 March 2019
10. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis (2000), university of California, Irvine
11. Gamma, E., Vlissides, J., Johnson, R., Helm, R.: Design Patterns CD: Elements

of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1998)

12. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software veri�cation with
blast. In: Proceedings of the 10th International Conference on Model Checking
Software. pp. 235�239. SPIN'03, Springer-Verlag, Berlin, Heidelberg (2003)

13. Krüger, S., Späth, J., Ali, K., Bodden, E., Mezini, M.: CrySL: An Extensible
Approach to Validating the Correct Usage of Cryptographic APIs. In: ECOOP.
pp. 10:1�10:27 (2018)

14. Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011) (Oktober 2011)

15. Marrero, W., Clarke, E., Jha, S.: A model checker for authentication protocols. In:
Rutgers University (1997)

16. Murata, M., Tozawa, A., Kudo, M., Hada, S.: Xml access control using static
analysis. ACM Trans. Inf. Syst. Secur. 9(3), 292�324 (Aug 2006)

17. Naumovich, G., Centonze, P.: Static analysis of role-based access control in j2ee
applications. SIGSOFT Softw. Eng. Notes 29(5), 1�10 (Sep 2004)

18. Petrasch, T., Piskachev, G., Spaeth, J., Bodden, E.: Authcheck spring implemen-
tation. https://github.com/secure-software-engineering/authcheck/, online

19. del Pilar Salas-ZÃ¡rate, M., Alor-HernÃ¡ndez, G., Valencia-GarcÃ­a, R.,
RodrÃ­guez-Mazahua, L., RodrÃ­guez-GonzÃ¡lez, A., Cuadrado, J.L.L.: Ana-
lyzing best practices on web development frameworks: The lift approach. Science
of Computer Programming 102 (2015)

20. Strom, R.E.: Mechanisms for compile-time enforcement of security. In: Proceedings
of the 10th ACM SIGPLAN POPL. pp. 276�284. ACM, New York, NY, USA (1983)

21. Sun, F., Xu, L., Su, Z.: Static detection of access control vulnerabilities in web ap-
plications. In: Proceedings of USENIX. USENIX Association, Berkeley, CA, USA
(2011)

AuthCheck: Program-state Analysis for Access-control Vulnerabilities 15

22. Xu, Y., Xie, X.: Modeling and analysis of authentication protocols using colored
petri nets. In: Proceedings of the 3rd ASID. ASID'09, IEEE Press, Piscataway, NJ,
USA (2009)

Leveraging Highly Automated Theorem Proving
for Certification

Deni Raco, Bernhard Rumpe, and Sebastian Stüber

Software Engineering, RWTH Aachen University, Germany www.se-rwth.de

Abstract. This work demonstrates how highly automated theorem prov-
ing can be leveraged for sparing testing costs during certification of
safety-critical software such as in avionics. A verification framework for
distributed interactive systems is presented. Components are modeled
as stream processing functions. The functional methodology is modular
with respect to serial, parallel and feedback composition. To specify and
formally verify properties of distributed systems, a stream-based verifi-
cation infrastructure is encoded in the theorem prover Isabelle. Composi-
tion operators for components are provided, thus allowing to scale proofs
from individual components to complex networks. The underlying math-
ematical theory FOCUS stands out among competitors by the fact that
refinement is fully compositional. The associativity and commutativity of
the provided general composition operator enables a compositional ver-
ification. In this paper the stream theory encoded in Isabelle is demon-
strated. This represents a small part of our encoding of the methodology
focusing only on channel histories specifications, yet sufficient to demon-
strate dealing successfully with underspecification, supporting automatic
refinement checking during design time, time-sensitive specification, as
well as verifying safety and liveness properties. The theory is evaluated
in a case study where the occurring refinement steps from system re-
quirements, to high level requirements, to low level requirements, until
an implementation is reached, are demonstrated to be proven correct at
the push of a button.

Keywords: Formal Verification · Distributed Systems · Certification

1 Industrial Background

In a software development process, such as the one depicted in Fig.1 for avionics,
checking the correctness of the refinement steps from system requirements, to
high level requirements, to low level requirements, until the source code, can get
very costly to execute by reviewing and testing[2]. Formal methods can provide
help for this. Well-known classes of formal methods are[40]:

– Theorem Proving:
– Most powerful, most expressive formal methods tools.
– Require expertise and continuous interaction to successfully use.

2 D. Raco, B. Rumpe et al.

– Model Checking:
– Less expressive than theorem provers.
– Mostly automated, but still require expertise to use successfully.

– Abstract Intepretation and Static Analysis [29, 7, 38, 22, 42]:
– Least expressive, targeted to very specific artifacts.
– Require some expertise to discharge false positives.

Theorem proving [5] can assure correctness, a confidence level in general
not reachable by testing. Furthermore, it can result in sparing costs on testing
(partially replaces it, partially complements it), which is known as the most
costly part of the development of safety-critical systems [10, 2].

Using theorem proving, one can show e.g. that the high-level requirements
are consistent (i.e. do not contradict each other) by proving that there is at
least one implementation satisfying the high-level requirements. One can show
that the system architecture and the high-level requirements of the components
comply with the system requirements by proving that the system requirements
are satisfied by the design instantiated with any components that satisfy the
high-level requirements [5].

Fig. 1. Software Development Process as in DO-178C [5]

The usual challenges when using theorem proving are:

– Sound semantics of the underlying formal method?
– Degree of automation acceptable?

– Significant expertise and user training necessary?
– Is the theorem proving tool qualified itself?

Leveraging Highly Automated Theorem Proving for Certification 3

A set of 5 criteria as defined by Airbus for the use of formal methods is [41]:

– Soundness
– Cost Savings
– Analysis of unaltered programs
– Usability by normal software engineers on normal machines
– Ability to be integrated into the DO-178B conforming process

To deal with this requirements, the underlying methodology of this paper
offers:

– Sound semantics from a well-estabilished stream-theory [19, 13, 34, 4, 8, 9, 3,
33]
– Time-sensitivity, stateful modeling, nondeterminism and refinement sup-
ported

– User-friendly, yet sufficiently expressive modelling language [11]
– Practicable for industrial application without need for theorem-proving
skills

– Can be integrated into the conformance process of functional safety stan-
dards
– Tool qualification of Isabelle [26] practicable due its axiomatic, conserva-
tive nature

– Scalability through compositional verification (allowed by commutativity
and associativity of the general composition operator [19, 3])
– Saves costs on testing (can partly replace it, and partly complement it)

The unique selling point of the stream-based formalism FOCUS [4] is:

– Refinement is fully compositional. Refinement of a subcomponent implies
refinement of the overall composition.

– Properties of the old system hold directly for the new refined one aswell,
thus sparing tests and integration costs after each refinement step.

– Verifying refinement of underspecification accompanies the design phase

The focus in this paper is in showing how the developed methodology han-
dles typical development challenges in a software life cycle. The framework is
thus demonstrated to deal successfully with important aspects of development
of distributed systems such as underspecification, refinement and time-sensitive
specifications, as well as safety and liveness properties. For this, refinement of
specifications concerning streams allowed in a communication bus of the Flight
Guidance System are presented. For the purpose of this paper, this is sufficient
to demonstrate how theorem proving can be leveraged to spare costs in test-
ing, achieved by enriching an encoded infrastructure sufficiently with theorems
to ensure the proof for a refinement of a specification is found at the push of
the button. For scaling the methodology over networks of components and a
compositional verification of properties of the overall system at the push of a
button, see [19] and https://www.youtube.com/watch?v=krl4Q7MAAlo for a
short video demo.

In particular, the contributions of this paper consist of:

4 D. Raco, B. Rumpe et al.

– The encoding of streams with domain-theoretical concepts in the theorem
prover Isabelle

– an infrastructure for time-sensitive specifications
– a sufficient collection of functions and theorems over these structures to

ensure that refinement proofs of the case study are performed at the push
of a button without further user interaction

– refinement of requirements
– liveness property specification
– a case study consisting in checking refining requirements evaluate the en-

coded abstract theories

This paper does not go in depth in demonstrating details of our formaliza-
tion of components as stream processing functions (see the previous work for a
demonstration [19]) due to the limited space. This paper rather focuses in depth
on one specific part of our contribution, namely in this case modeling channel his-
tories of a distributed system, underspecification, and full automated refinement
checking. This is a simple, yet sufficiently expressive example to demonstrate a
run through all the development process phases when refining requirements such
as those occurring in the guidance certification standards.

The rest of the paper consists in the following: The next section presents
a short overview of the underlying theory. Subsequently, a formalization of a
communication bus eg. in the Flight Guidance System is demonstrated, as well
as the automatic refinement checking process from system requirements, to high-
level requirements, low-level requirements, until the code.

2 Modular Hierarchical Methodology Providing
Correctness by Design

Distributed systems in particular have proven to be more error-prone than se-
quential software [4, 27]. Their correct development has been a challenge in the
past decades. To reduce ambiguities, formal methods have been proposed. For-
mal methods are known to be challenging in becoming practical in the industry
due to their high costs [18]. Methodologies like CSP [15, 14], FOCUS [4], CCS
[24], Petri Nets [31], or the π-calculus [25] are used to detect potential sources of
errors earlier [12, 23, 1]. They support the correctness of the typical steps of de-
velopment, which are usually structural decomposition and refinement. In order
to spare integration costs, these two need to be compatible.

For the stepwise development of systems, the mathematical methodology
FOCUS [4] is used in this work. The communication between components of a
distributed system is modeled here by streams of messages flowing in unidirec-
tional communication channels. The advantage that FOCUS has compared to
the others is that refinement is indeed fully compositional. This means that one
can decompose a system into components, refine those separately, and have the
composed system be correct by construction. An example is shown in Figure 2.

To specify and formally verify properties of distributed systems, a part (the
stream encoding) of a verification tool chain (Figure 3) is demonstrated in this

Leveraging Highly Automated Theorem Proving for Certification 5

Fig. 2. Example of a Distributed System: The Alternating Bit Protocol [4]. For example
the sender has an input as with messages from the alphabet Bit := {0, 1}.

paper. A developer of a distributed system is provided with an architecture
description language (ADL) [11],[19] to specify in a user-friendly way the com-
ponents and their interaction. This language also allows a developer to specify
a desired property of the system. By the push of a button, the created system
model is then transformed into an equivalent specification in the theorem prover
Isabelle [26]. The property is transformed in a theorem and exterior solvers are
called to prove or disprove the property. A more detailed overview is given in
[19].

The ADL MontiArc [11] was created with MontiCore [16]. This language
is used to describe component-and-connector architectures. The component be-
havior is described here by an automaton with input/output [34]. The user can
specify the component interfaces, their behavior, their interaction, as well as the
desired property of the system in the language OCL [32, 6, 35], which is embedded
in the ADL. The ADL components are then translated into equivalent automata
encoded in the theorem prover Isabelle. These automata are transformed within
Isabelle into (sets of) stream processing functions, which constitute the semantics
of the automata [34]. The desired property of the system written from the user
in the ADL is translated into a theorem in Isabelle. Finally, general theorems
over stream processing functions written in Isabelle support highly-automated
property verification.

There are a couple of reasons for enforcing the specification of components
by means of an ADL featuring automata, rather then giving the user just an
encoding of the stream data type and set of theorems over streams in Isabelle
and total freedom of specifying components over (tuples of) streams [8, 9].

First, the ADL is for a user more comfortable than writing recursive (specified
typically as least fixed points [37]) stream processing functions in Isabelle or their
composition [3].

6 D. Raco, B. Rumpe et al.

Second, the automata with input and output of this methodology are de-
signed to describe the realizable components (and only these) [34]. Realizability
is reflected by the following properties called monotonicity and continuity.

Since streams model history, not every function is a model of a real life
interactive component. After emitting a message, a component cannot take it
back. Thus an extension of the input can only lead to the extension of the output.
This property is called monotonicity. This property is also needed to guarantee
the existence of least fixed points [34] to give meaning to (streams flowing in)
feedback loops [33].

Also, a component cannot react to infinity, thus one cannot look at the infinite
input stream to produce an output. This property is known as continuity [34].
This property is also needed not only to guarantee the existence, but also to
calculate the least fixed point by approximation from the finite prefixes of a
stream.

Allowing a user to specify any kind of function from streams to streams would
also mean to expect the user to write a proof that the function is realizable. Since
this would be not practical, a better way would be to provide the user a language
(the ADL with automata of this paper) by which only realizable functions can
be specified. The proof that the (sets of) stream processing functions, which
are obtained from the semantics of (non-deterministic) automata, are realizable
[34], is one of the important general theorems, which is encoded in the theorem
prover Isabelle.

Third, the automata of this methodology are general enough to represent
every realizable stream processing function [34].

Proper composition operators such as serial, parallel, feedback, and a general
operator combining all these, are encoded to support a modular modeling. The
composition of realizable components by these operators results in a realizable
composed component [34].

Furthermore, a proper specification methodology should be able to describe
underspecification. This may arise due to lack of information during the life cycle
of a development process or due to non-deterministic behavior during run time.
In this methodology this is reflected by non-deterministic automata, which have
as semantics a set of stream processing functions.

Behavioral refinement is an important development step performed by de-
creasing underspecification through elimination of alternatives and thus making
a specification more precise.

Refinement of the behavior of an automata is reflected by set-inclusion of the
(sets of) stream processing functions representing their semantics [34]. Thus, the
properties of the refined system are derived in this methodology per construc-
tion from the proven properties of the previous one, thus sparing testing and
integration costs on the new system.

Refinement being fully compositional guarantees that after decomposing the
system, refining the components separately, and then composing back, the sys-
tem does not gain new behaviors.

Leveraging Highly Automated Theorem Proving for Certification 7

A specification should also able to handle timing information. An airbag
controller for instance is highly time-dependent. The specification framework
presented in this work is able to represent timing. One way to model time is to
extend the alphabet of messages of a stream with a dummy element ∼ (read:
eps, see next section for a formal description in Isabelle). By assuming a discrete
global clock, each time unit in a stream consists either in a message, or an
∼ used to model the absence of messages. Using timed automata with input
and output, one can represent in this methodology the desired timed stream
processing functions. The realizability properties in the timed case (such as e.g.
it is invalid to look in the future of the input when producing the actual output
message) are equivalently represented by the concepts of weak causality [34], as
well as the stronger version by adding delay and thus dealing with feedback loops
called strong causality [34].

In this methodology, a code generator from the ADL MontiArc to Isabelle
generates specifications of the components, their composition, and helper the-
orems to support verification. A library of theorems encoded in the theorem
prover Isabelle leads to high automation of the proofs.

Some of the mathematical fundaments of the concepts above have been for-
malized in theorem provers, such as HOLCF in [17]. The works [36, 8, 9] formal-
ized streams in the theorem prover Isabelle with domain-theoretical concepts,
and constitute a foundation of this paper. Furthermore tools such as AutoFO-
CUS [39] use stream-based semantics to model distributed systems. Also, the
Ptolemy Project [20, 21] tackles the challenge to formalize component networks.
In the Isabelle-formalization in this paper a high-level API is provided to hide
fixed-point theoretical concepts from the developer.

Fig. 3. Tool Chain

3 Verification of Distributed Software Development Steps

3.1 Algebra of Stream Processing Functions

FOCUS [4] and its main construct stream consitute the mathematical underpin-
ning of the methodology. An (untimed) stream is a (potentially infinite) sequence

8 D. Raco, B. Rumpe et al.

of messages over a set M . Mω is the set of all streams and constitutes the union
of finite streams M∗ and infinite ones M∞. Similar to lists, a constructor ” : ”
with signature M ⇒ Mω ⇒ Mω is used to create streams by appending an
element to an existing stream.

To specify time-sensitive behavior, a variant of timed streams (so-called time-
synchronous streams) is used. The message set is extended by an element ∼ (read
eps). As mentioned, it is interpreted as ”no messages arrived in that timeslot”.
A discrete global clock is assumed. An element of the stream is then a message
or an ∼ (which has the length of one time frame as well). This way one can react
to the absence of messages.

The concatenation of two streams is denoted by _. A prefix ordering v is
defined on the set of streams to approximate infinite streams:

∀x, y ∈Mω. x v y ⇔ ∃s ∈Mω. x _ s = y

Mω forms a complete partial order [34].

3.2 Abstract Theories in Isabelle

An important goal of the paper is to demonstrate the verification of requirements
refinement. The theorem prover Isabelle [26] is a generic system for implementing
formalisms in higher-order logic. Informally HOL can be described with the
equation

HOL = Functional Programming + Logic.

An Isabelle-Theory consists of data type definitions, functions and proofs
[19, 28]:

theory ExampleTheory

imports Main

begin

(* definitions and lemmas *)

end

Please note that the proofs of the abstract lemmas below are omitted for
space reasons, whereas the proof of the case study lemmas is fully demonstrated
(and consists in applying the abstract lemmas of the theory). The logic of com-
putable functions (HOLCF) has been encoded by Regensburger [30] and Huffman
[17]. Based on this, the data type of natural numbers extended with the infinite
element is encoded using the domain command [17]:

domain lnat = lnsuc (lazy lnpred::lnat)

lnsuc is a constructor and its inverse is lnpred. The domain command makes
sure the type lnat is an element of the classes zero and ord by generating a
bottom element and an order relation.

Leveraging Highly Automated Theorem Proving for Certification 9

instantiation lnat :: "{ord , zero}"

begin

definition lnzero_def: "(0 ::lnat) ≡ ⊥"
definition lnless_def: "(m::lnat) < n ≡ m v n ∧ m 6= n"

definition lnle_def: "(m::lnat) ≤ n ≡ m v n"

instance ..

end

A finite natural number n is represented by Fin n, where lntake is a function
which retrieves a specified number of elements of the recursively constructed
data type lnat.

definition Fin::"nat ⇒ lnat" where

"Fin k ≡ lntake k ·∞"
The dot after the letter k above is an abbreviation used when a continuous

function is applied [17].
Then, the infinite element is encoded:
∞ is the maximum of all lnats

definition Inf’::"lnat" ("∞") where

"Inf’ ≡ fix · lnsuc"
Fix denotes the least fixed point operator calculated as Kleene-Approximation.

A couple of theorems for increasing automation follows:
Bottom element of lnat is 0:

lemma bot_is_0: "(⊥::lnat) = 0"

0 is not equal ∞:

lemma Inf’_neq_0[simp]: "0 6= ∞"
∞ is a fixed point of lnsuc:

lemma fold_inf[simp]: "lnsuc ·∞ = ∞"
The brackets with content [simp] ensure that this rewriting rule is integrated

in the core of Isabelle and the lemma does not need to be explicitly called by
name during a proof. The preparations are done to be ready to encode the
stream data type. The implementation is similar to that of lazy lists in Haskell,
and apart from little technical details, looks as following, where ’a is a type
parameter abstracting from the sort of messages:

domain ’a stream = lsconc "’a" (lazy "’a stream")

domain [17] creates a new (potentially recursive) data type enhanced with
an order (in this case the prefix order) and a bottom element (here the empty
stream). lsconc is the name of the constructor that appends an element to the
rest of the stream.

The data type can be extended into time-synchronous streams by using the
constructor Msg with arity 1 and eps for ”no data” (abbreviated as ∼).

10 D. Raco, B. Rumpe et al.

datatype ’a tsyn = Msg ’a | ∼

For instance the following time-synchronous stream over natural numbers <
[Msg 3,∼,Msg 5,∼,∼, ...] > is interpreted as: message 3 arrives in the first time
slot, no message arrives in the second time slot, message 5 arrives in the third
time slot, and then no message arrives anymore. Depending on the application
to be modeled, the granularity (duration of a time slot) can be interpreted at
will (a time slot can correspond to 1 millisecond, or perhaps to 1 minute).

Now a couple of functions, abbreviations, as well as lemmas over streams
follow.

The empty stream is denoted as ε.

abbreviation sbot :: "’a stream" (" ε ")
where "sbot ≡ ⊥"

sup’ is used to construct a stream by a single element.

definition sup’:: "’a ⇒ ’a stream" ("↑_" [1000] 999) where

"sup’ a ≡ updis a && ε "

The updis command above lifts an arbitrary type to a discrete pointed partial
order [17].

sdom retrieves the set of all values in a stream and snth is used to get the
n-th element of a stream.

definition sdom:: "’a stream → ’a set" where

"sdom ≡ Λ s. {snth n s | n. Fin n < #s}"

slen retrieves the length of a stream. It is defined as the number of its
elements or ∞ for inifinite streams.

definition slen:: "’a stream → lnat" where

"slen ≡ fix · (Λ h. strictify · (Λ s. lnsuc · (h · (srt · s))))"

The command strictify above turns a function into a strict one [17].

UNIV denotes the set of all elements in a data type.

The function slookahd applies a function to the head of stream. If the stream
is empty, ⊥ (the polymorphic parameter ’a of streams has also an order defined
in it and has also a least element) is returned. This function is especially useful
for defining own stream-processing functions.

definition slookahd:: "’a stream → (’a ⇒ ’b) →
(’b::pcpo)" where

"slookahd ≡ Λ s f. if s = ε then ⊥ else f (shd s)"

Hereby shd returns the head of a stream.

sfilter removes all elements from the stream which are not included in the
given set.

definition sfilter:: "’a set ⇒’a stream →’a stream" where

"sfilter M ≡ fix · (Λ h s. slookahd · s · (λ a.

Leveraging Highly Automated Theorem Proving for Certification 11

(if (a ∈ M) then ↑a • (h · (srt · s)) else h · (srt · s))))"

Type classes, such as those in Haskell, are supported: class ’a::countable

means that the type ’a is restricted to belong in the class of countable types,
where there exists an injective mapping from the type ’a into the natural num-
bers.

class countable =

assumes ex_inj: "∃to_nat :: ’a ⇒ nat. inj to_nat"

sinftimes concatenate a stream infinitely often to itself (an abbreviation in
form of a suffix is introduced in brackets).

definition sinftimes :: "’a stream ⇒ ’a stream" ("_∞")
where

"sinftimes ≡ fix · (Λ h. (λs.
if s = ε then ε else (s • (h s))))"

Finally, a collection of lemmas over streams to improve high automation:

Only the empty stream has length zero:

lemma only_empty_has_length_0 : "#s 6= 0=⇒ s 6= ε "

Filtering with a superset of the stream’s domain does not change the stream:

lemma sfilter_sdoml3:

"sdom · s ⊆ X−→ sfilter X · s = s"

A couple of connections between sfilter and sdom (notice the infix abbrevia-
tion of the sfilter function):

lemma sfilter_bot_dom: "(A 	 s) = ⊥=⇒ sdom · s ⊆ UNIV - A"

lemma sdom_sfilter1: assumes "x∈sdom · (A	s)"
shows "x∈A"

lemma sfilterEq2sdom_h: "sfilter A · s = s−→ sdom · s ⊆ A"

lemma sfilterEq2sdom_h: "sfilter A · s = s−→ sdom · s ⊆ A"

If the head of a stream is in M, then sfilter will not drop the head of the
stream:

lemma sfilter_in[simp]:

"a ∈ M=⇒ sfilter M · (↑a • s) = ↑a • sfilter M · s"

If the stream is not empty, then the following holds for the length:

lemma srt_decrements_length : "s 6= ε=⇒ #s =

lnsuc · (#(srt · s))"

12 D. Raco, B. Rumpe et al.

If x isn’t empty then concatenating head and rest leaves the stream un-
changed:

lemma surj_scons: "x6=ε=⇒↑(shd x) • (srt · x) = x"

If filtering everything except z from the stream x doesn’t produce the empty
stream, then z must be an element of the domain of x:

lemma sfilter2dom:

"sfilter {z} · x 6= ε=⇒ z ∈ sdom · x"

Mapping a stream to head and rest is injective:

lemma inject_scons: "↑a • s1 = ↑b • s2=⇒ a = b ∧ s1 = s2"

If the head of a stream is in M, then sfilter will keep the head of the
stream:

lemma sfilter_in[simp]:

"a ∈ M=⇒ sfilter M · (↑a • s) = ↑a • sfilter M · s"

After filtering by filter T, the head of the result is in T:

lemma sfilter_ne_resup: "sfilter T · s 6= ε=⇒ shd (sfilter

T · s) ∈ T"

A relevant connection between sfilter and sinftimes:

lemma sfilter_sinftimes_in[simp]:

"sfilter {a} · (sinftimes (↑a)) = sinftimes (↑a)"

Repeating a stream infinitely often is equivalent to repeating it once and then
again infinitely often:

lemma sinftimes_unfold: "sinftimes s = s • sinftimes s"

Prepending a singleton stream increases the length by 1:

lemma slen_scons[simp]: "#(↑a•as) = lnsuc · (#as)"

For nonempty s, sinftimes s is infinite:

lemma slen_sinftimes: "s 6= ε=⇒ #(sinftimes s) = ∞"

Finally, infinitely cycling the empty stream produces the empty stream again:

lemma strict_icycle[simp]: "sinftimes ε = ε "

The neccessary structures were introduced, so that the case study can now
be specified and verified.

Leveraging Highly Automated Theorem Proving for Certification 13

3.3 Case Study in Isabelle: Automatic Checking of Requirements
Refinement

A bus in the Flight Guidance System is modeled and a specification indicates
which streams are allowed to flow in it. The system requirement in this case is a
set of streams fulfilling a fairness property, which is required to guarantee that
a communication protocol using this bus works correctly (the protocol is not
further specified, but such fairness requirements are not unusual; notice for ex-
ample that the Alternating Bit Protocol [4] is only correct under the assumption
of a fair medium).

By the following system requirement (SysReq), the only stream histories of
messages allowed to flow in the bus are only those such that, after waiting an
infinite amount of time, the number of actual proper messages occurring in the
bus is infinite (thus the ”no-data” symbol eps can occur only a finite amount of
time).

definition SysReq :: "(nat tsyn stream) set" where

"SysReq ≡ {s. #((UNIV -{∼})	s) = ∞}"

To guarantee the SysReq, the developed high level requirements can look as
follows: The length of the stream should be infinite and every element of the
stream is an actual message, starting from the second one. The data type can
be abstracted to any countable one (typical for high level requirements; fixed
only after reaching low level requirements), in the sense that, if a property holds
for any arbitrary countable type, then it also holds on natural numbers of (as
wished in SysReq). The decision, whether the first element is a proper message,
or an eps, is postponed for a point in time where the overall architecture of the
system is known. If this bus is eg. to be embedded in connection with a feedback
loop, then the first element being an ”no-data” can act as a delay of 1 unit and
thus make sure that the semantics of the stream flowing in the feedback loop is
uniquely defined. If not, then this ”delay” shall not be needed.

definition HLR :: "((’a::countable) tsyn stream) set"

where

"HLR ≡ {s. #s=∞ ∧ sdom · (srt · s) ⊆ UNIV -{∼}}"

The refinement checking is formulated as a subset relation between HLR and
SysReq and the encoding of sufficient abstract theorems ensures that the proof
is found at the push of a button without the need of user interaction:

lemma "HLR ⊆ SysReq"

by (smt HLR_def SysReq_def Collect_mono mem_Collect_eq

Inf’_neq_0 fold_inf lnat.sel_rews (2)

sfilter_sdoml3 sfilter_bot_dom sfilter_in

sfilter_nin slen_empty_eq srt_decrements_length

surj_scons sfilter2dom sdom_def)

Next, low level requirements shall be specified, namely the underspecification
is reduced eg. after determining that there is no feedback loops in the architec-

14 D. Raco, B. Rumpe et al.

ture, and thus no necessity for introducing a delay. So the first message is fixed,
leading to LLR (yet a deterministic implementation is not reached yet):

definition LLR :: "(nat tsyn stream) set" where

"LLR = {s. #s=∞ ∧ sdom · s ⊆ UNIV -{∼}}"
The correctness of the refinement is checked again fully automatically:

lemma "LLR ⊆ HLR"

by (smt HLR_def LLR_def DiffD2 sdom_sfilter1

sfilter_sdoml3 sfilter_srtdwl3 singletonI surj_scons

Inf’_neq_0 inject_scons sfilterEq2sdom_h sfilter_in

sfilter_ne_resup slen_empty_eq Collect_mono)

An interesting question concerning requirements is usually whether they are
consistent, i.e. is there at least an implementation fulfilling these?

Finally, an implementation is chosen, namely the infinite stream consisting
of only the number one:

definition Code :: "nat tsyn stream" where

"Code = ↑(Msg 1)∞"
The consistency of LLR is shown fully automatically by proving that the

Code-implementation above is an element of the LLR set.

lemma "Code ∈ LLR"

by (smt LLR_def Code_def Diff_UNIV Diff_empty

Diff_eq_empty_iff bot_is_0 insert_iff tsyn.distinct (1)

mem_Collect_eq only_empty_has_length_0 sfilterEq2sdom

sfilter_sinftimes_in sinftimes_unfold

slen_scons slen_sinftimes strict_icycle

subset_Diff_insert subset_singleton_iff

lnat.con_rews)

In conclusion, theorem proving can be leveraged to spare costs for certifi-
cation activities by enriching the corresponding encodings with a large number
of general abstract theorems. For scaling up to networks of components, a code
generator can help by generating helpful theorems about the model and their
proof. The code generator mapping a modeling language into a formal language
generally needs to be qualified. On the other hand, the qualification of the gener-
ated proofs does not pose a threat though, since the proofs will finally be checked
by the theorem prover Isabelle and the qualification of Isabelle is not hard due
to its axiomatic and conservative nature.

References

1. Akroun, L., Salaün, G.: Automated verification of automata communicating via
fifo and bag buffers. Formal Methods in System Design 52(3), 260–276 (2018)

2. Brahmi, A., Delmas, D., Essoussi, M.H., Randimbivololona, F., Atki, A., Marie,
T.: Formalise to automate: deployment of a safe and cost-efficient process for

Leveraging Highly Automated Theorem Proving for Certification 15

avionics software. In: 9th European Congress on Embedded Real Time Soft-
ware and Systems (ERTS 2018). Toulouse, France (Jan 2018), https://hal.

archives-ouvertes.fr/hal-01708332
3. Broy, M., Rumpe, B.: Modulare hierarchische Modellierung als Grundlage der

Software- und Systementwicklung. Informatik Spektrum 30(1), 3–18 (2007)
4. Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus

on Streams, Interfaces and Refinement. Springer Verlag Heidelberg (2001)
5. Cofer, D.D., Miller, S.P.: Do-333 certification case studies. In: NASA Formal Meth-

ods (2014)
6. Cook, S., Kleppe, A., Mitchell, R., Rumpe, B., Warmer, J., Wills, A.C.: The Ams-

terdam Manifesto on OCL. In: Object Modeling with the OCL, pp. 115–149, LNCS
2263. Springer Verlag, Berlin (2002)

7. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of fluctuat on safety-critical avionics software. In: International
Workshop on Formal Methods for Industrial Critical Systems. pp. 53–69. Springer
(2009)

8. Gajanovic, B., Rumpe, B.: Isabelle/HOL-Umsetzung strombasierter Definitio-
nen zur Verifikation von verteilten, asynchron kommunizierenden Systemen.
Informatik-Bericht 2006-03, Technische Universität Braunschweig, Carl-Friedrich-
Gauss-Fakultät für Mathematik und Informatik (2006)

9. Gajanovic, B., Rumpe, B.: Alice: An advanced logic for interactive component en-
gineering. In: 4th International Verification Workshop (Verify’07). Bremen (2007)

10. Gigante, G., Pascarella, D.: Formal methods in avionic software certification: The
do-178c perspective. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of
Formal Methods, Verification and Validation. Applications and Case Studies. pp.
205–215. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

11. Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural modeling of inter-
active distributed and cyber-physical systems, Technical report / Department of
Computer Science, RWTH Aachen, vol. 2012,3. RWTH and Technische Informa-
tionsbibliothek u. Universitätsbibliothek and Niedersächische Staats- und Univer-
sitätsbibliothek, Aachen and Hannover and Göttingen (2012)

12. Hall, A.: Seven myths of formal methods. IEEE Software 7(5), 11–19 (Sep 1990).
https://doi.org/10.1109/52.57887

13. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of” semantics”?
Computer 37(10), 64–72 (2004)

14. Heim, R., Nazari, P.M.S., Ringert, J.O., Rumpe, B., Wortmann, A.: Modeling
robot and world interfaces for reusable tasks. In: Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on. pp. 1793–1798. IEEE (2015)

15. Hoare, C.A.R.: Communicating sequential processes. In: The origin of concurrent
programming, pp. 413–443. Springer (1978)

16. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench Edition 2017. Aach-
ener Informatik-Berichte, Software Engineering, Band 32, Shaker Verlag (Decem-
ber 2017)

17. Huffman, B.C.: HOLCF ’11: A definitional domain theory for verifying functional
programs. Portland State University, [Portland, Or.] (2012)

18. Kasauli, R., Knauss, E., Kanagwa, B., Nilsson, A., Calikli, G.: Safety-critical sys-
tems and agile development: A mapping study. pp. 470–477 (08 2018)

19. Kriebel, S., Raco, D., Rumpe, B., Stüber, S.: Model-Based Engineering for Avion-
ics: Will Specification and Formal Verification e.g. Based on Broy’s Streams Be-
come Feasible? In: Proceedings of the Workshops of the Software Engineering Con-
ference. Workshop on Avionics Systems and Software Engineering (AvioSE’19).

16 D. Raco, B. Rumpe et al.

CEUR Workshop Proceedings, vol. 2308, pp. 87–94. CEUR-WS.org (February
2019)

20. Lee, E.A.: Computing needs time. Communications of the ACM 52(5), 70–79 (May
2009)

21. Lee, E.A.: Fundamental limits of cyber-physical systems modeling. ACM Transac-
tions on Cyber-Physical Systems 1(1) (11 2016), http://chess.eecs.berkeley.
edu/pubs/1183.html

22. Li, Y., Tan, T., Xue, J.: Effective soundness-guided reflection analysis. In: Blazy, S.,
Jensen, T. (eds.) Static Analysis. pp. 162–180. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

23. Maoz, S., Pomerantz, N., Ringert, J.O., Shalom, R.: Why is my component and
connector views specification unsatisfiable? pp. 134–144 (2017)

24. Milner, R.: Communication and concurrency, vol. 84. Prentice hall New York etc.
(1989)

25. Milner, R.: Communicating and mobile systems: the pi calculus. Cambridge uni-
versity press (1999)

26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A proof assistant for Higher-
Order Logic, Lecture notes in artificial intelligence, vol. 2283. Springer, Berlin [etc.]
(2002)

27. Olveczky, P.C.: Designing Reliable Distributed Systems. Springer-Verlag London
(2017)

28. Paulson, T.N.L.C., Wenzel, M.: A proof assistant for higher-order logic (2013)
29. Payet, E., Spoto, F.: Checking Array Bounds by Abstract Interpretation and Sym-

bolic Expressions, pp. 706–722 (06 2018)
30. Regensburger, F.: HOLCF: Eine konservative Erweiterung von HOL um LCF. na

(1994)
31. Reisig, W.: Petri nets: an introduction, vol. 4. Springer Science & Business Media

(2012)
32. Richters, M., Gogolla, M.: On formalizing the uml object constraint language ocl.

In: International Conference on Conceptual Modeling. pp. 449–464. Springer (1998)
33. Ringert, J.O., Rumpe, B.: A Little Synopsis on Streams, Stream Processing Func-

tions, and State-Based Stream Processing. International Journal of Software and
Informatics 5(1-2), 29–53 (July 2011)

34. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Doktorarbeit, Technische Universität München (1996)

35. Rumpe, B.: Modellierung mit UML, vol. 2nd Edition. Springer (2011)
36. Spichkova, M.: Specification and Seamless Verification of Embedded Real-Time

Systems: FOCUS on Isabelle. VDM Verlag Dr. Müller Aktiengesellschaft & Co.
KG, Saarbrücken (2008)

37. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific jour-
nal of Mathematics 5(2), 285–309 (1955)

38. Urban, C., Ueltschi, S., Müller, P.: Abstract interpretation of ctl properties. In:
Podelski, A. (ed.) Static Analysis. pp. 402–422. Springer International Publishing,
Cham (2018)

39. Voss, S., Zverlov, S.: Design space exploration in autofocus3 - an overview. In:
Mař́ık, V., Lastra, J.M., Skobelev, P. (eds.) IFIP First International Workshop on
Design Space Exploration of Cyber-Physical Systems. Springer (2014)

40. Wagner, L.: Formal methods for certification: Why and how? Safe & Secure Sys-
tems and Software Symposium (S5) url: http://www.mys5.org/Proceedings/

2016/Day_3/2016-S5-Day3_1505_Wagner.pdf (2016), accessed on 19.07.2019

Leveraging Highly Automated Theorem Proving for Certification 17

41. Wiels, V.: Formal methods in aerospace: Constraints, assets and challenges.
url: https://richmodels.epfl.ch/_media/madrid13-slides-virginie-wiels.
pdf, accessed on 19.07.2019

42. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for
polyhedral x10 programs. In: Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. pp. 23–34. PPoPP ’13, ACM,
New York, NY, USA (2013). https://doi.org/10.1145/2442516.2442520, http://

doi.acm.org/10.1145/2442516.2442520

