
Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Improving the Numerical Accuracy of Parallel
Programs by Data Mapping

Farah Benmouhoub1, Pierre-Loic Garoche2, and Matthieu Martel1,3

1 LAMPS Laboratory, University of Perpignan, France.
2 DTIS, ONERA, Toulouse, France.

3 Numalis, Montpellier, France.
1{first.last}@univ-perp.fr,2pierre-loic garoche@onera.fr

Abstract. The first objective of parallelization is to speed up the pro-
gram execution. Typically, a program is split into multiple parts that are
computed on different computation cores. A usual approach is to balance
the load of each core, splitting the computation evenly among them.
However, when the program performs computations in floating-point
arithmetic, we should pay extra attention to their numerical accuracy. In-
deed, floating-point numbers are a finite approximation of real numbers,
they are therefore prone to accuracy problems due to the accumulated
round-off errors. Concerning the numerical accuracy, parallelism intro-
duces additional problems due to the order of operations between several
computation units.
Rather than focusing on balancing the load, we focus here on a proper
split of the problem driven by the numerical accuracy of the computation.
In this paper, we describe a new technique that relies on static analysis
by abstract interpretation, and which aims at improving the numerical
accuracy of computations by dividing the problem, between computation
units, according to the order of magnitude of data.

Keywords: Numerical accuracy, Static analysis, Mapping, scientific com-
puting.

1 Introduction

Scientific computing is typically performed with floating-point arithmetics as
defined by the IEEE754 standard [1, 13] and therefore sensitive to associated
errors; and this problem tends to increase with parallelism. To cope with this is-
sue, we aim at improving the accuracy of computation [3] using a new technique
based on static analysis by abstract interpretation. In floating-point computa-
tions, in addition to rounding errors, the computations order may also affect the
accuracy of the results. Indeed, as illustrated in Figure 1, for the same mathe-
matical expression, eg. a sum, different summation algorithms can be applied,
i.e. with different ordering of the computations.

To better illustrate, we can take an example of calculating in IEEE754 single
precision (binary 32) the sum of three values x, y and z, where x = 109, y = −109

et z = 10−9, we obtain:

((x+ y) + z) = ((109 − 109) + 10−9) = 10−9 (1)

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

(x+ (y + z)) = (109 + (−109 + 10−9)) = 0 (2)

The equality as well as addition operator represent here the operations performed
with floating point arithmetics. We note that, for the same values of x, y and z,
and for the same arithmetic operation, we obtain two different results because of
parsing the three values differently. In that specific case, an absorption occurred:
a small value vanished when added to a large one.

(t + (z + (y + x))) (((x + y) + z) + t) (((x + y) + (z + t)))

Fig. 1. The different possible sums.

Objective: The key idea of this work is to detect potential ordering of scalars
that could lead to an optimization of the numerical accuracy of the computation.
In the example above, the lack of accuracy was caused by computation involving
scalars of different orders of magnitude. Roughly speaking, in order to keep
the computation accurate, one needs to know if the variables can be ordered
with respect to their order of magnitude, starting summations with the smallest
elements.

Our contribution: We propose to rely on static analysis to detect such ar-
rangements of matrix coefficients: detecting the order of magnitude of each scalar
involved in the computation and the ordering (increasing, decreasing, balanced)
of sequences of such. Once this ordering is accurately computed, one can choose
an appropriate summation algorithm (left to right, right to left, balanced) and
obtain more accurate floating point results.

Application: In the case of parallel programs [17], we aim at specializing
the code of each process depending on its data, instead on focusing only on
load balancing between computation cores. This specialization is based on data
mapping [8, 9]. The idea is to assign to each processor sets of data that can be
summed together accurately. This corresponds to a given partitioning of the sum.
We propose to rely on static analysis to build these partitions before distributing
the data among processors. We applied the approach to an iterative method to
solve linear systems Ax = b. To keep the presentation simple we used the simplest
iterative scheme: Jacobi’s method.

In this paper, we describe the different phases of our technique. We first
rely on abstract interpretation to represent properties of sequences of values

2

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

s = x1, x2, . . . xn. The computed properties, called gradients, indicate how the
elements of s are ordered. Let grad(s) ∈ {↗,↘,→} be such property, denoting
increasing, decreasing, or balanced sequences of values, respectively. By balanced
sequences, we mean values of the same magnitude (same exponent in base 10.)
rather than constant sequences. Considering the largest sequences with the same
gradient property, we can build a partitioning thanks to a greedy algorithm.

More precisely, the first step of our method is to perform a static analysis of
the matrix A and the vector x in order to be able to identify the sign and the
gradient of the different blocks. After this identification, each block is assigned
to a computation unit with an appropriate summation algorithm.

Plan: This article is organized as follows. Section 2 briefly presents Jacobi’s
method, and means to parallelize it. Section 3 presents our contribution: we
detail our technique with its different steps. Section 4 describes the greedy al-
gorithm used to build partitions and the abstraction of the gradient property.
Section 5 details our motivational example following by some experimental re-
sults obtained during the measurement of the efficiency of our technique. Lastly,
in Section 6 we conclude and discuss about future works.

2 Jacobi’s Method

2.1 A basic Iterative Algorithm to Solve Linear Systems

The Jacobi method is a well known numerical method used to solve linear sys-
tems of n equations with n unknowns. We choose it for its simplicity, and as a
first algorithm on which to apply our methodology. In this method, an initial
guess, an approximate solution x0, is selected and is iteratively updated until
finding the actual solution x.

In order to explain the idea of the algorithm, let us consider the following
system of n linear equations Ax = b, where:

A =

a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
an1 an2 · · · anm

 , b =

b1
b2
...
bn

 and x =

x1
x2
...
xm

The computation of the solution at each iteration is given by Equation (3)

below:

xk+1
i =

1

aii

bi − n∑
j=1, i 6=j

aijx
k
j

 . i = 1, . . . , n, aii 6= 0. (3)

Note that Jacobi’s method is stable whenever the matrix A is strictly diagonally
dominant (cf. Equation 4), i.e. on each line, the absolute value of the diagonal
term is greater than the sum of absolute values of the other terms:

3

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

∀i ∈ 1, . . . , n, |aii| >
∑
j 6=i

|aij |. (4)

Our choice for this method is related to the existence of the summation
operator, i.e. a sum is performed at each iteration of the algorithm. Because
of floating-point numbers, this sum may become wrong because of accumulated
errors. For example, it is well known that if we sum the small values with the
large ones an absorption may arise and, as a result, a possible lack of accuracy. In
order to make end to this problem, we stand for adding the values in increasing
order by starting with the small ones. Note that there exists many summation
algorithms in the bibliography [15, 16] and that for general arithmetic expressions
or numerical algorithms, program transformation improving the accuracy have
been proposed [10, 7, 14].

2.2 Related Works in the Parallelization of Jacobi’s Method

Several works have been focused on parallelizing Jacobi algorithms, providing
different partitioning for different goals.

Luke and Park [12] consider two parallel Jacobi algorithms for computing the
singular value decomposition of an n× n matrix. By relating the algorithms to
the cyclic-by-rows Jacobi method, they prove convergence of one of the algorithm
for odd values of n and in the general case for the second algorithm.

Zhou and Brent [18] show the importance of sorting columns by norms in
each sweep for one-sided Jacobi SVD computation. They describe two parallel
Jacobi orderings. These orderings generate n(n− 1)/2 different index pairs and
sort column norms at the same time. The one-sided Jacobi SVD algorithm using
these parallel orderings converges in about the same number of sweeps as the
sequential cyclic Jacobi algorithm.

Coope and Macklem [4] present how to efficiently use parallel and distributed
computing platforms when solving derivative-free optimization problems with
the Jacobi algorithm. Convergence is achieved by introducing an elementary
trust region subproblem at synchronization steps in the algorithm.

All these works focused on the parallelization of Jacobi’s method. Some are
focused on the improvement of the convergence of the algorithm, eg. when com-
puting a singular value decomposition. Some others try to make the best use of
the parallel architecture performance. However, none of them addressed the issue
of the numerical accuracy of computations. All the methods mentioned above
are specific algorithms that cannot defined automatically we aim at finding such
methods (or probably slightly less efficient ones) automatically.

Our past results [6] show that improving the accuracy of computation also led
to acceleration of convergence for iterative algorithms. Our motivation is there-
fore to parallelize the Jacobi’s method focusing first on accuracy and obtaining,
as a side result, a better convergence.

4

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

3 Abstract Domains

In this section, we introduce the first step of our contribution which consists in
detecting increasing, decreasing or balanced patterns in vectors.

Focusing on vectors and the associated increasing, decreasing or balanced
patterns, we introduce abstract domains to represent and compute properties
over vector sets. Let Rn be the set of vectors of size n and ℘(Rn) the powerset
of such n-sized vectors. The set ℘(Rn) is fitted with a partial order, the set
inclusion. It is a complete lattice.

Thanks to the framework of Abstract Interpretation [5], we can define differ-
ent abstractions of this lattice, and combine them to compute properties of sets
of n-vectors. In this section, we introduce the various Galois connection that we
do to obtain gradients. An overview of our sequence of connections is given in
Figure 2. Sign abstraction relies on the classical sign domains to detect whether
all elements of the vector have the same sign. Grad(ient) abstraction is used
to represent the increasing, decreasing or balanced nature of the vector scalars.
This property is computed over a first abstraction representing values by their
floating point exponent, i.e. their order of magnitude. The partially ordered sets
Expn, Exp#nD , Grad are defined in details in sections 3.1, 3.2, 3.3 respectively.

Thanks to the framework of Abstract Interpretation [5], we can define ab-
stractions of this lattice in a modular fashion, combining them to compute prop-
erties of sets of n-vectors. In this section, we introduce a set of Galois connections
that we will combine to compute our gradients properties. An overview of our
sequence of connections is given in Figure 2. The concrete (hence most precise)
partially ordered set is the set of n-vectors 〈℘(Rn),⊆〉. The Sign abstraction
relies on the classical sign domains to detect whether all elements of the vector
have the same sign. Therefore a positive abstract element denotes the set of n-
vectors with only positive scales. The other main abstraction is the Grad(ient)
abstraction, representing the increasing, decreasing or balanced nature of the
vector scalars. As an example , an increase abstract element denotes the set
of n-vector with increasing scalars. This gradient abstract domain is defined
thanks to the introduction of simpler abstract domains. First, sets of n-vector
are abstracted as n-vectors of order of magnitude, associating each scalar by its
floating point exponent. Then these abstract vectors are further abstracted to
produce the gradient abstraction. The partially ordered sets Expn, Exp#nD , Grad
are defined in details in sections 3.1, 3.2, 3.3, respectively.

3.1 Expn: Order of Magnitude of Matrix Elements

Indeed, floating points numbers do not need to be exactly ordered to avoid
absorption. We only need to have values that are similar or of the same order
of magnitude. A first abstract domain represents a set of n-vectors ℘(Rn) by a
vector of a set of exponent Expn = (℘(Z))n. Exponents are defined as signed
integers where the integer n corresponds to the exponent of the real number it
represents, i.e. blog10(x)c the integer value of log10(x) rounded towards −∞.

5

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Fig. 2. Global diagram of abstractions.

Let us first formalize this abstraction: the lattice 〈℘(R),⊆,∪,∩, ∅,R〉 is ab-
stracted by the lattice 〈℘(Z),⊆,∪,∩, ∅,Z〉. Let (αExp, γExp) be the pair of ab-
straction and concretization functions defined as:

αExp : ℘(R)→ ℘(Z)
X 7→ {log10(x) : x ∈ X)}

γExp : ℘(Z)→ ℘(R)
Y 7→ {x ∈ R| log10(x) ∈ Y)}

(5)

Property 1 (Exp Galois connection). The pair of (αExp, γExp) is a Galois connec-
tion.

〈℘(R),⊆〉 −−−−→←−−−−
αExp

γExp
〈Exp,⊆〉

Proof. Both domains are sets and the functions are defined element-wise: they
are monotonic. αExp ◦ γExp(Y) = Y is reductive while γExp ◦ αExp(X) = {x ∈
R|∃x′ ∈ X, log10(x) = log10(x′)} ⊇ X is extensive. ut

The abstraction function represents a set of values by the magnitude obtained
with a log10 function. The concretization function is the associated operation to
obtain a Galois connection. As an example, αExp({1.104, 2.104, 3.104}) = {4}
since all these values share the same exponent 41.

We can now define the lift of this abstraction to sets of n-vectors in ℘(Rn).
The lattice 〈℘(Rn),⊆,∪,∩, ∅,R〉 is abstracted by the lattice Expn = 〈(℘Z)n,⊆n
,∪n,∩n, ∅n,Zn〉 where ⊆n,∪n, and ∩n denote the lift of classical set operators
to n-vectors. Eg. ∀x, y ∈ (℘Z)n, x⊆ny iff ∀i ∈ [1, n], xi ⊆ yi. Similarly ∀x, y ∈
(℘Z)n,∃z ∈ (℘Z)n, st. z = x∪ny and ∀i ∈ [1, n], zi = xi ∪ yi.

Let us introduce the pair of function (αnExp, γ
n
Exp):

αnExp : ℘(Rn)→ (℘Z)n

X 7→ z ∈ (℘Z)n s.t. ∀i ∈ [1, n], zi = αExp({xi|x ∈ X})
γnExp : (℘Z)n → ℘(Rn)

z 7→ {x ∈ Rn|∀i ∈ [1, n], xi ∈ γExp(zi)}

(6)

1 In practice, since the values are represented by sums of powers or 2, one could have
use the binary log log2.

6

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Theorem 1 (Expn Galois connection). The pair of (αnExp, γ
n
Exp) is a Galois

connection.

〈℘(Rn),⊆〉 −−−−→←−−−−
αn

Exp

γn
Exp

〈Expn,⊆n〉

Proof. The two domains ℘(Rn) and ℘(Z)n are sets and the functions are defined
element-wise for each vector: they are monotonic. αnExp ◦ γnExp(z) = z is reductive
while γnExp ◦ αnExp(X) = {x ∈ Rn|∃x′ ∈ X ∀i ∈ [1, n], αExp(x

′
i) = αExp(xi)} ⊇ X

is extensive. ut

The example below represents the abstraction of a set of vectors ℘(Rn) by a
vector of sets of exponents ℘(Z)n using the abstract function αnExp.

1000
100
10
1

 ,

0.001

1
0.1
8

αn
Exp→

{−3, 3}
{0, 2}
{−1, 1}
{1}

 ∈ ℘(Z)n

3.2 Exp#n: Abstraction of Exponents in Scalar Words

Manipulating vectors of sets is not convenient nor tractable. We need to further
abstract these vectors of set of exponents Expn = (℘Z)n. Since each element of
these vectors is a set of integers, one can rely on the state of the art of abstract
domains to represent these sets. For example let us take again the vector of sets

v =

{−3, 3}
{0, 2}
{−1, 1}
{1}

of section 3.1. We are going to abstract it into v# of abstract elements. Then

we need to abstract the sets {-3, 3}, {0, 2}, {-1, 1} and {1}. For this purpose,
we are going to use the Kildall or interval domain.

Let 〈D,vD〉 be a sound abstraction of 〈℘(Z),⊆〉 associated with a proper

Galois connection (αD, γD). We define the set Exp#nD = Dn as the n-vector of
D elements. Each operator is the lift of domain D operators to vectors. Eg.
∀x, y ∈ Exp#nD , x vnD y iff ∀i ∈ [1, n], xi vD yi. of section 3.1. We are going
to abstract it into v# of abstract elements. Then we need to abstract the sets
{-3, 3}, {0, 2}, {-1, 1} and {1}. For this purpose, we are going to use either the
Kildall abstract domain or the interval abstract domain.

Let 〈D,vD〉 be a sound abstraction of 〈℘(Z,⊆〉 associated with a proper

Galois connection (αD, γD). We define the set Exp#nD = Dn as the n-vector of
D elements. Each operator is the lift of domain D operators to vectors. Eg.
∀x, y ∈ Exp#nD , x vnD y iff ∀i ∈ [1, n], xi vD yi.

We introduce the following abstraction:

〈Expn,⊆〉 −−−−→←−−−−
αn

D

γn
D 〈Exp#nD ,vnD〉 (7)

7

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

where αnD(x) = z with ∀i ∈ [1, n], zi = αD(x). Similarly, γnD(z) = x ∈ Expn with
∀i ∈ [1, n], xi ⊆ γD(zi).

Instantiation. We propose to instantiate this abstraction by two basic ab-
stract domains:

1. 〈K,vK〉 Kildall’s constants domain [11] with K = Z ∪ {⊥,>}
2. 〈I,vI〉 Intervals with I = ((Z ∪ {−∞})× (Z ∪ {+∞})) ∪ {⊥}

Applied to the above example, we obtain:
{−3, 3}
{0, 2}
{−1, 1}
{1}

 αn
K→

>
>
>
1

{−3, 3}
{0, 2}
{−1, 1}
{1}

 αn
I→

[−3, 3]
[0, 2]

[−1, 1]
[1, 1]

3.3 Abstraction in Gradient

To abstract the gradient from data, we define a new comparison relation accord-
ing to the order of magnitude of the data noted by ≤#, such that we associate
to a set of values (x1 · x2 · · xn) one of the following five values ⊥,↗,↘,→
and >. We need to be able to compute an abstract gradient denoting the mono-
tonic feature of a sequence of elements of D, i.e. Exp#nD . In order to detect the
increasing properties between abstract value, we need to introduce the abstract
operator ≤#

D: D × D → B. Before introducing instantiations of ≤#
D in Equa-

tions (9) and (10) for the domains of Section 3.2 we detail the general properties

that ≤#
D has to satisfy. Note that, in property 2, the order ≤ is the usual order

on integers.

Property 2 (Soundness of ≤#
D). A sound abstract binary operator ≤#: D×D →

B shall satisfy ∀x# ∈ D,⊥ ≤ x# and:

∀x#, y# ∈ D \ {⊥},∀x ∈ γD(x#), y ∈ γD(y#),

x# ≤#
D y# =⇒ x ≤ y

Let G = {⊥,↗,↘,→,>} be a set of abstract gradient, fitted with the partial
order vG with ∀g ∈ G,⊥ vG g, g vG > as illustrated in Figure (3).

T

T

Fig. 3. Lattice of gradients.

8

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Using ≤#
D, we define the abstract gradient g ∈ G, associated to the sequence

of (x1 · x2 · · xn) ∈ Dn. We introduce the last abstraction:

〈Exp#nD ,⊆nD〉 −−−−→←−−−−
αG

γG 〈G,vG〉 (8)

where

αG(x1 · x2... · xn) =

↗ when x1 ≤#

D x2 ·· ≤#
D xn,

↘ when xn ≤#
D ·.... · x2 ≤

#
D x1,

→ when x1 = x2 · ...· = xn,
> otherwise.

and,

– γG(↗) = {(x1, . . . , xn) ∈ Dn | ∀i ∈ [1, n[, xi ≤#
D xi+1}.

– γG(↘) = {(x1, . . . , xn) ∈ Dn | ∀i ∈ [1, n[, xi+1 ≤#
D xi}.

– γG(→) = {(x1, . . . , xn) ∈ Dn | ∀i ∈ [1, n[, xi = xi+1}.
– γG(>) = {(x1, . . . , xn) ∈ Dn}.

Theorem 2 (Exp Galois connection). The pair of (αG, γG) is a Galois con-
nection.

〈Exp#nD ,vnD〉 −−−−→←−−−−
αG

γG 〈G,⊆G〉

Proof. Both Exp#nD and G are sets and the functions γG and αG are defined
component-wise for each vector: They are monotonic by construction. The com-
position αG ◦γG(g) = g is reductive while γG ◦αG(x1, . . . , xn) = {(x1, . . . , xn) ∈
Dn|∃(x′1, . . . , x′n) ∈ Exp#nD : ∀i ∈ [1, n],

αExp#n
D

(x′i) = αExp#n
D

(xi)} ⊇ Exp#nD is extensive since αExp#n
D

is extensive itself.
ut

Instantiation. We need to define the operator ≤#
D for the domains 〈K,vK〉

and 〈I,vI〉.

– For Kildall’s constant,

x# ≤#
K y# ,

 true if x# = ⊥
true when x#, y# ∈ Z, γK(x#) ≤ γK(y#)
false otherwise

(9)

– For interval,

x ≤# y

{
x = [a, b] y = [c, d] and b ≤ c
or x = ⊥ (10)

Property 3 (Soundness of ≤#
K). The binary operator ≤#

K : D ×D → B satisfies:

∀x#, y# ∈ K,∀x ∈ γK(x#), y ∈ γK(y#),

x# ≤#
K y# =⇒ x ≤ y

9

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Proof. Let x#, y# ∈ K such that x# ≤#
K y#, only three cases are possible:

1. x# = ⊥, y# = i for some i ∈ Z

γK(⊥) = ⊥, γK(i) = {i} and ⊥ ⊆ {i}.

2. x# = i for some i ∈ Z, y# = >. In this case:

γK(i) = {i}, γK(>) = > and {i} ⊆ >.

3. x# = ⊥, y# = >. Then,

γK(⊥) = ⊥, γK(>) = > and ⊥ ⊆ >.

Property 4 (Soundness of ≤#
I). The binary operator ≤#

I : D ×D → B satisfies:

∀x#, y# ∈ I, ∀x ∈ γI(x#), y ∈ γI(y#),

x# ≤#
I y# =⇒ x ≤ y

Proof. The three following cases are similar to the correspond cases in the proof
of Property 2:

1. x# = ⊥, y# = >,
2. x# = ⊥, y# = [a, b] for a, b ∈ Z,
3. x# = [a, b] for a, b ∈ Z, y# = >.

The last case to be considered is when x# = [a, b] and y# = [c, d]. By hypothesis

[a, b] ≤#
I [c, d], by definition of ≤#

I in Equation 10:

b ≤ c. (11)

Let x ∈ [a, b], y ∈ [c, d]. Consequently x ≤ b and c ≤ y. In addition from
Equation (11) we know that b ≤ c. We conclude that x ≤ b ≤ c ≤ y.

We end this section by two examples of a set of two vectors of size 3 con-
taining all the abstractions. The difference between the two examples is the
abstraction of exponents in scalar words, such that the first example uses the
abstract function αnK while the second uses the abstract function αnI .

 100
5

0.001

 ,

0.1
8

100

 αn
Exp→

{−1, 2}
{1}
{−3, 2}

 αn
K→

>1
>

 αn
G→ >

 10

100
1000

 ,

 1
1000
10000

 αn
Exp→

{0, 1}{2, 3}
{3, 5}

 αn
I→

[0, 1]
[2, 3]
[3, 5]

 αn
G→ ↗

4 Partitioning Data with the Abstract Gradient

We now introduce the next step of our contribution, (1) from the results provided
by the static analysis in Section 3, build partition in which we select the appro-
priate summation arrangement. Then (2) apply our technique on one example
coming from realistic problems in mechanics.

10

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

4.1 Greedy Algorithm

As mentioned in Section 1, we aim at using the domain G to abstract matri-
ces used as inputs of numerical algorithms. Our goal is to use the information
provided by G to determine the best way to perform the sums arising in these
algorithms.

More precisely, we want to detect lines, columns or blocks of the matrix that
could be efficiently optimized with respect to numerical accuracy.

As described in Section 3, usingG, we partition data x = x1, x2, . . . xn accord-
ing to their signs and magnitudes. Obviously, there are many ways to partition
a matrix in blocks before assigning a gradient to each block. Trying to assign
or compute a single gradient for a row or a column may result in the imprecise
> gradient. Therefore we aim at partitioning the matrix, assigning sequence of
gradients to rows or columns.

For example, let us consider the vector x = 1, 2, 3, 4, 4, 3, 2, 1. While a com-
mon gradient shall be >, we aim at assigning it to the sequence {↗,→,↘}.

Our objective, for an efficient algorithm, is to compute large blocks with
homogeneous gradients. The worst case being a complete partition of the matrix
or vector with as many abstract elements as concrete elements.

To build an efficient partition we introduce a greedy algorithm. We will see
in our experimental results in Section 5 that this algorithm abstracts a vector of
size n by few different gradients. Note that, in future works, for parallelization,
we will need blocks of same size. We plan to subdivide the blocks found by
our algorithm to the greatest common divisor of the sizes computed for each of
them in order to obtain our final partition. Let us also mention that our greedy
algorithm is not necessarily optimal. We plan to explore this point in future
work.

In our study to detect the blocks of the same sign and magnitude we use a
greedy algorithm given in Figure 4.

Fig. 4. The greedy algorithm to partition vector of n size in gradients.

11

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

The idea is to compare the values of the input vector component-wise. These
values can be in decreasing, increasing or balanced order. The number of blocks
is determined by the number of gradients calculated by this algorithm. To do
so, the algorithm takes as input the solution vector x = x1, x2.....xn at each
iteration. The outputs of the algorithm are the gradient of each block noted
by Grad x and the index of the component by which this block begins noted
by Grad position. The algorithm of Figure 4 partitions a vector x of size n in
gradients. This algorithm calls the function compare defined in Figure 5. The

Fig. 5. Function compare between two values x and y.

greedy algorithm scans x from its first elements to its last (first while loop), the
current position is denoted position. As long as the values are ordered in the same
order following ≤#

I or ≤#
K , we keep the elements in the same block (second while

loop). When a change of gradient is detected, we start a new block by initiating
a new iteration of the first loop (first while loop). If we consider the example
presented previously x = 1, 2, 3, 4, 4, 3, 2, 1 we obtain as an output the following
two pieces of information for each block, [Grad position = 1 : Grad x =↗],
[Grad position = 4 : Grad x =→], [Grad position = 5 : Grad x =↘]. Our
work is still in progress and our perspective is to use the abstract gradients to
determine how to partition matrices in blocks in such a way that we may assign
each block to different processors of a parallel machine and to specialize the
summation algorithm of each processor according to its data in order to optimize
the numerical accuracy without increasing the execution time (see Figure 1).
Usual mappings are depicted in Figure 6, we plan to select one of these mappings
according to the gradient information.

4.2 Example

Let us illustrate the method on a small example, a matrix with N=2. First,
we generate the system corresponding of the flexion of one dimension beam

12

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Fig. 6. Different parallelization of Jacobi’s method.

introduced in a more general context in Section 5. We then compute the solution
of this linear system by the Jacobi’s method, and associate to each value of
the solution vector its floating point exponent using the abstract function αnExp
presented in the Section 3.

A =

(
11778.279410 −1778.279410
−1778.279410 3556.558820

)
, b =

(
0.000662
0.001125

)
x1 =

(
-5.623062e-07 ⇒ Exp1 = -7
-3.162326e-06 ⇒ Exp2 = -6

)
x2 =

(
-1.039753e-06 ⇒ Exp1 = -6
-3.443479e-06 ⇒ Exp2 = -6

)
x3 =

(
-1.082201e-06 ⇒ Exp1 = -6
-3.682203e-06 ⇒ Exp2 = -6

)
x4 =

(
-1.118244e-06 ⇒ Exp1 = -6
-3.703427e-06 ⇒ Exp2 = -6

)
x5 =

(
-1.121448e-06 ⇒ Exp1 = -6
-3.721448e-06 ⇒ Exp2 = -6

)
x6 =

(
-1.124169e-06 ⇒ Exp1 = -6
-3.723050e-06 ⇒ Exp2 = -6

)
x7 =

(
-1.124169e-06 ⇒ Exp1 = -6
-3.723050e-06 ⇒ Exp2 = -6

)
Once this step is over, we apply the abstract function noted by αG on the

exponents generated by the first abstraction in order to represent the increasing,
decreasing or balanced nature of the vector scalars. The results of this abstraction
are given below:

x1 =

(
Exp1 = -7
Exp2 = -6

)
⇒ grad =↗ x2 =

(
Exp1 = -6
Exp2= -6

)
⇒ grad =→

x3 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→ x4 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

x5 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→ x6 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

x7 =

(
Exp1 = -6
Exp2 = -6

)
⇒ grad =→

As we can observed the iterates compute the same gradient starting at x2.
We may deduce two points. First, a fixed point can be found for the example by
a static analysis. Second, we may chose a summation algorithm efficient for this
sequence (balanced sum). We could also assign this block of computation to the
same processors using only one summation algorithm.

13

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

5 Experimentations

In this section, we introduce some experimental results on a problem taken from
mechanics. Section 5.1 introduces the problem and our results are presented
in Section 5.2. For our experiments, our implementation is still in progress we
only use single matrices instead of sets of matrices. The abstractions ≤#

I and

≤#
K introduced in Section 3.2 are then useless (they reduce to singletons) and

we directly abstract matrices of concrete elements into gradients. Obviously, we
aim at improving this point in our next developments.

5.1 Flexion of a Beam

This example consists of a physical problem arising in Mechanics: the flexion of
an 1D elastic beam with Dirichlet boundary conditions on its extremities [2].
The discretization of this kind of problem is based on a finite element method
(FEM), as typically used in engineering. The actual resolution of most finite
elements problem require to solve a system of linear equations, eg. using the
recursive algorithm of Jacobi’s method. The representative diagram of our case
study is presented in Figure 7.

Fig. 7. Representation of the flexion of an 1D beam.

In Figure 7, u is discretized and represents the displacement such as u1 = α
and uN+1 = β, α and β the extremities where the beam is fixed such as (α =
β = 0). f is a constant vertical force acting on the domain interval Ω = [0, 1].
The problem is formalized as:{

u′′(x) = f ∀x ∈]0, 1]
u(0) = α and u(1) = β

Discretizing the mesh produces a linear system to resolve. First we introduce the
mesh of the domain Ω = [0, 1], considering N + 1 nodes {xi, i = 1, . . . , N + 1}
of the interval [0, 1] with x1 = 0, xN+1 = 1 and xi+1 = xi + hi,∀i = 1, . . . , N .
Next, the domain [0, 1] is discretized into N intervals (xi, xi+1) that are the finite
elements of size hi. Last, substitution of the known values (u1, uN+1) we obtain
the tridiagonal system pictured in Figure 8 that has to be considered as a system

14

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

of linear equations that we interest to solve using Jacobi’s method. This system
is made of three blocks. The first block is a tridiagonal matrix corresponding to
the beam, the second one (vector u) is the displacement and the last block is a
vector giving the size of finite elements.

Fig. 8. Tridiagonal linear system.

For our experiments, the values of h are computed automatically with the
specificity of obtaining symmetrical values of h. More precisely, we initialize the
first and the last values of h and we compute the others so that h[n−i−1] = h[i].

We fix the other parameters: penalization C = 106 while vertical force f =
−20N/m2.

We recall that our motivation is to create linear systems of different size N
modeling the flexion of a 1D beam. Then, we calculated the real solution X
using the Jacobi’s method.

Once the solution is calculated, we abstract the values of the solution vector
to exponent as presented in Section 3.1. After abstraction, we apply the greedy
algorithm to find the best partitioning of data, more precisely blocks of values
with the same sign and gradient.

5.2 Experimental Results

In this section, we present the experimental results of our study, focusing on
the numerical accuracy of computations obtained using our partitioning and
summation algorithms. First, we want to improve the efficiency of our technique
in the detection of scalars that have the same sign and gradient which can
be grouped in blocks and that could eventually lead to an optimization of the
numerical accuracy of computations. The most critical case is to have as many
blocks as values in the vectors.

In other words, the ratio between the total number of blocks and the size of
the matrix is equal to 1. To test our method, we generate different linear systems
of the form Ax = b that model the example previously described in Section 5.1,
after that we solve these systems using Jacobi’s method, then we applying our
technique on the solution vector x. For measuring effectiveness of our technique
we compute the average of the gradient of a set of matrices to compare the
variation of these average with those of matrices sizes, Figure 9 represents the
gradients average corresponding to each matrix size from 10 to 1000.

15

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	0.6

	0.7

	0 	200 	400 	600 	800 	1000 	1200

Av
er
ag
e	
Gr
ad
ie
nt
	fo
r	e
ac
h	
M
at
rix

Matrix	Sizes

Gradient	Variation	Versus	Matrix	Sizes	

Fig. 9. Gradients average for different matrix size from 10 to 1000.

We notice that for small matrices, for example N = 100 the average is around
0.6, so we conclude that the number of blocks represents 60% of the size of matrix.
We also notice that when the size of the matrix increases, the average decreases.
From these two remarks, we deduce that the efficiency of our technique is reached
when we handle large matrices.

Secondly, we want to know if for a given matrix we can generalize the di-
vision of scalars into lines, columns or blocks. As mentioned in Section 4, for
a linear system of the form Ax = b we apply our technique to a solution vec-
tor x = x0, x1,xn−1 at each iteration in order to group the data accordingly
to their signs and magnitudes. We associate for each sequence of data a corre-
sponding sequence of gradients, and each block is represented by two values: the
index i of the component xi,∀i ∈ [0, n − 1] by which it starts and the gradient
associated to its sequence of scalars. For the sake of simplicity we consider a
matrix of 16× 16 with coefficients taken from a realistic example corresponding
to the flexion of a beam developed in Section 5.1. The results of our study is
given below:
Iteration1 : [0 :→][2 :↘][3 :→][4 :↘][5 :→][9 :↗][10 :→][11 :↗][12 :→]
Iteration2 : [0 :→][1 :↘][2 :↗][3 :↘][5 :→][6 :↗][7 :↘][8 :→][10 :↗][11 :→][12 :↗]
Iteration3 : [0 :→][1 :↘][2 :↗][3 :→][4 :↘][5 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :→]
Iteration4 : [0 :↘][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘][12 :→]
Iteration5 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
Iteration6 : [0 :→][1 :↘][2 :↗][3 :↘][4 :→][6 :↗][7 :↘][9 :↗][12 :↘]
Iteration7 : [0 :→][1 :↘][2 :→][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
Iteration8 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
Iteration9 : [0 :→][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
Iteration10 : [0 :→][1 :↘][2 :↗][3 :↘][4 :→][5 :↗][7 :↘][9 :→][10 :↗][12 :↘]
Iteration11 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]

16

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Iteration12 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][6 :→][8 :↗][9 :↘]
Iteration13 : [0 :↘][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
Iteration14 : [0 :↗][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
Iteration15 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
Iteration16 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
Iteration17 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]
Iteration18 : [0 :→][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
Iteration19 : [0 :↗][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
Iteration20 : [0 :↘][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
Iteration21 : [0 :→][1 :↗][2 :↘][3 :↗][4 :↘][5 :→][6 :↗][7 :↘][8 :→][9 :↗][10 :↘]
Iteration22 : [0 :→][1 :↘][2 :↗][3 :↘][5 :↗][7 :↘][9 :↗][12 :↘]
Iteration23 : [0 :→][1 :↘][2 :↗][3 :↘][4 :↗][6 :↘][7 :↗][8 :↘][10 :↗][11 :↘][12 :↗]
Iteration24 : [0 :→][1 :↗][2 :↘][4 :↗][5 :↘][7 :↗][9 :↘]
Iteration25 : [0 :→][2 :↘][3 :↗][4 :↘][6 :↗][7 :↘][8 :↗][10 :↘]

If we take iteration 11 as an example, we notice that after each 4 iterations we
find the same sequence of blocks, i.e. the same sequence of gradients is associate
to the sequence of scalars as it is shown by iterations 15, 19, 23. In the same
way, the iterations 16 and 14 are repeated after 4 iterations respectively given
by the iterations 20, 24 and 18, 22. A static analyzer unfolding the loop 4 times
could then find a fixed point for this example.

6 Conclusion

In this article, we have introduced our technique which relies en static analysis
to improve the numerical accuracy of linear systems resolution. We have detailed
its different steps and the algorithm that its used to detect potential ordering
of scalars. We have tested our technique across experimental results obtained
on one example coming from a mechanical problem. The results obtained show
the efficiency of our technique in data analysis to identifying different groups
of data accordingly to their signs and magnitudes. An interesting perspective
consists on specializing the code of each process depending on its group of data.
We would like to study how our technique can be extended to other iterative
methods (Newton, Gauss-Seidel, etc.,). Code transformation techniques for nu-
merical precision have proved their efficiency to accelerate the convergence of
iterative methods in the sequential case. These results will be extended to par-
allel algorithms to improve the convergence of iterative methods.

Acknowledgments This work was supported by a scholarship from the Langue-
doc Roussillon region and partially by project ANR-17-CE25-0018 FEANICSES.

References

1. ANSI/IEEE. IEEE Standard for Binary Floating-Point Arithmetic. SIAM, 2008.

17

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

2. M. Barboteu, N. Djehaf, and M. Martel. Numerically accurate code synthesis for
gauss pivoting method to solve linear systems coming from mechanics. Computers
& Mathematics with Applications, 77(11):2883–2893, 2019.

3. F. Benmouhoub, N. Damouche, and M. Martel. Improving the numerical accuracy
of high performance computing programs by process specialization. In Matthieu
Martel, Nasrine Damouche, and Julien Alexandre Dit Sandretto, editors, TNC’18.
Trusted Numerical Computations, volume 8 of Kalpa Publications in Computing,
pages 11–23. EasyChair, 2018.

4. I.D. Coope and M. Macklem. Parallel jacobi methods for derivative-free optimiza-
tion on parallel or distributed processors. The ANZIAM Journal, 2004, 07 2005.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages, pages 238–252, 1977.

6. N. Damouche, M. Martel, and A. Chapoutot. Impact of accuracy optimization on
the convergence of numerical iterative methods. In M. Falaschi, editor, LOPSTR
2015, volume 9527 of Lecture Notes in Computer Science, pages 143–160. Springer,
2015.

7. N. Damouche, M. Martel, and A. Chapoutot. Improving the numerical accuracy
of programs by automatic transformation. STTT, 19(4):427–448, 2017.

8. Y. Georgiou, E. Jeannot, G. Mercier, and A. Villiermet. Topology-aware job map-
ping. IJHPCA, 32(1):14–27, 2018.

9. T. Hoefler, E. Jeannot, and G. Mercier. An Overview of Process Mapping Tech-
niques and Algorithms in High-Performance Computing. In Emmanuel Jeannot
and Julius Zilinskas, editors, High Performance Computing on Complex Environ-
ments, pages 75–94. Wiley, June 2014.

10. A. Ioualalen and M. Martel. A new abstract domain for the representation of
mathematically equivalent expressions. In Static Analysis - 19th International
Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings,
volume 7460 of Lecture Notes in Computer Science, pages 75–93. Springer, 2012.

11. G.A. Kildall. A unified approach to global program optimization. In Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, POPL ’73, pages 194–206, New York, NY, USA, 1973. ACM.

12. F.T. Luk and H. Park. A proof of convergence for two parallel jacobi svd algo-
rithms. IEEE Trans. Comput., 38(6):806–811, June 1989.

13. J.M. Muller, N. Brisebarre, F. De Dinechin, C.P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser, 2010.

14. P. Panchekha, A. anchez-Stern, J.R. Wilcox, and Z. Tatlock. Automatically im-
proving accuracy for floating point expressions. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages 1–11. ACM, 2015.

15. S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I:
faithful rounding. SIAM J. Scientific Computing, 31(1):189–224, 2008.

16. S.M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part
II: sign, k-fold faithful and rounding to nearest. SIAM J. Scientific Computing,
31(2):1269–1302, 2008.

17. D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamber-
lain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot,
A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. New-
burn, and M. Perics. Trends in data locality abstractions for hpc systems. IEEE
Transactions on Parallel and Distributed Systems, 28(10):3007–3020, Oct 2017.

18

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

18. B.B. Zhou and R.B. Brent. On parallel implementation of the one-sided jacobi
algorithm forsingular value decompositions. pages 401–408, 02 1995.

19

