
Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for data structures that
implement cooperation mechanisms

Guillaume Cluzel1 and Cezara Drăgoi2

1 École Normale Supérieure de Lyon
2 INRIA, ENS, CNRS, PSL

Abstract. Abstract interpretation techniques for concurrent programs
are one of the main current challenges for static analysis. In this paper
we propose a trace abstraction for concurrent data structures that im-
plement cooperation mechanisms, for example java.exchanger or stack
elimination. Our abstraction is designed for programs with unboundedly
many threads and unbounded data structures.

1 Introduction

The design of concurrent data structures is an active research area. The first ap-
proach towards concurrent data structures uses locks, that ensure synchroniza-
tion between threads by allowing at most one thread to write (read) a shared
resource. The problem with lock-based implementations is that they are block-
ing, i.e., if the thread holding the lock is suspended or crashes before releasing
the lock, the entire execution blocks, no other thread being able to acquire a
non-released lock. Consequently, non-blocking implementations were developed,
where the threads that cannot access the shared memory are not blocked, instead
of retry, or report the operation as unsuccessful. Typical examples are Treiber’s
stack [9] or Michael-Scott queue [11] (they are implemented using instructions
like compare-and-swap). However, even for these data structures, concurrent ac-
cesses are sequentialized at one or two entry points of the data structure, despite
its potentially unbounded size. Therefore, the latter data structures suffer also
from a performance bottleneck, all accesses to the data structure being done at
the top of the stack, respectively the head/tail of the queue, therefore the degree
of parallelism is heavily restricted.

The advantage of these data structures is that they have a sequential spec-
ification, easily understood by programmers. More precisely, the standard cor-
rectness criteria for concurrent data structures is linearizability, which says that
a client cannot distinguish the concurrent implementation from a sequential
(atomic) one. The client communicates with the data structure using an API, and
the client cannot distinguish a concurrent implementation of the methods in the
API from a sequential one, that we refer to as the specification. The methods in
the library represent the different operation that the library can perform. Given
their sequential specifications, verification methods [1, 17, 18] and tools [17] have
been developed, that check a simulation relation between concurrent executions

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

2 G. Cluzel et al.

of the (concurrent) implementation and sequential executions in the specifica-
tion. The simulation is based on the user annotations the concurrent program
with the so-called linearization points. When a concurrent execution reaches a
linearization point, in the corresponding sequential execution a new operation is
added, matching the effect of the concurrent operation whose linearization point
was reached.

More recent non-blocking data structures like, stack-elimination [9] or com-
bined funnels [14], increase the parallel access to the data structure by imple-
menting a collaboration mechanism. Roughly, two concurrent operations, e.g., a
push and a pop, are allowed to exchange values without accessing the shared
stack, using instead a pair of registers. The performance of these data structures
emerges in heavily concurrent environments where hundred of threads try to ac-
cess the same data structure in parallel. The implementation of stack-elimination
uses an auxiliary (elimination) array, where each array cell is a pair of registers
that allows two operations to exchange values. The size of the array determines
the number of operations that can be done in parallel. The exchange mechanism
is implemented also as a standalone data structure, java.exchanger, in the li-
brary java.concurent, being available as a synchronization primitive between
two threads. All collaboration mechanisms are based on a shared memory im-
plementation of a message passing protocol between the threads that exchange
values. Therefore these data structures have a concurrent specification [8], that
captures the effect of the collaboration between two threads.

The verification of data structures that have a concurrent specification has
been less studied in the literature. With the exception of [7] all other formal
methods techniques tackle the bug finding problem [3, 4] or study decidabil-
ity issues when the number of threads and the size of the data structure are
bounded. In [7] the verification method proposed does not address directly the
verification of cooperation mechanisms, instead it reduces it to the verification of
a library that has a sequential specification, and can be addressed with existing
verification techniques.

In this paper we study the verification problem for concurrent data structures
that have concurrent specifications. We define a trace abstraction of concurrent
executions that captures relations between threads, namely the essence of the
collaboration between two threads. The main ingredients of the abstraction are
1) it uses a bounded number of threads to abstract the behavior of unbound-
edly many threads, 2) for each operation it remembers a subset of the events
produced, i.e., the call, the return, and writes to the share memory, and 3) it
is parametrized by an abstract domain that captures the global state of the
program projected on a bounded number of threads. This is the first approach,
as far as we know, that proposes an abstract domain for proving correctness of
concurrent data structures that have a concurrent specification. Our results are
preliminary, we have manually tried our abstraction on a few algorithms like,
java.exchanger, (a simpler version of) stack-elimination, and validity, a con-
current object with one method that tries to write a value and returns either the

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 3

value it wrote if the write was successful, or the value written by a concurrent
operation, whose write was unsuccessful.

The paper presents in Section 2 the syntax and semantics of the language
we consider, Section 3 presents the abstract domain we propose to capture the
interference between threads, in Section 4 we give an example of analysis, and
finally related works and conclusions are discussed in Section 5.

2 Description of the language

2.1 Syntax

p ::= sinit; (s1 ‖ · · · ‖ sn ‖ · · ·)
s ::= if c then s else s | while c do s | x := e | ∗p := e | s; s

| ATOMIC() | END_ATOMIC()

e ::= n ∈ Z | x ∈ Nvar | ∗p ∈ Pvar | e+ e | e− e | e× e

c ::= e = 0 | e 6= 0 | e < 0 | · · ·

Fig. 1. Syntax of our concurrent language

We consider a simple language that is described in figure 1. Let Vars be
the set of program variables, with Nvar the set of variables of basic types and
Pvar the set of variables of composite (record) type. Without loss of generality
we consider only integer variables and pointers to user defined struct types.
Furthermore we distinguish the shared variables, of basic or composite type,
and we denote them by SNvar and SPvar. The shared variables are declared
with the global keyword.

For simplicity, we will group different variables inside a structure, like in
C language to allow us to create more powerful structures. We will define this
structure with the keyword struct following by the name of the struct, and
access its members by structvar.fieldname. For simplicity, we consider that our
structures are not recursive.

We introduce the operator of parallel composition ‖. The rule p means that a
program fist calls an init function which corresponds to the initialization of the
shared variables used by the data structure and then it calls an unbounded num-
ber of threads t1, . . . , tn, . . . that execute in parallel s1, . . . , sn, . . . respectively.
We denote as T the set of all running threads.

We also introduce two built-in functions ATOMIC() and END_ATOMIC()
that are used in the way ATOMIC(); s;END_ATOMIC() to make the statements
s atomic, which means that no process can interfere and the code s is executed
without interruption.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

4 G. Cluzel et al.

We will also group different instructions inside functions that can take ar-
guments, and can return a value. A function call can be used as an expression,
and we note as f(e1, . . . , en) a function call where f is the function name and
e1, . . . , en are the arguments of the function.

2.2 Concrete state semantic

The state of a program is given by an evaluation of the shared variables and
an evaluation of the local variables of each thread. Let t1, . . . , tn be n threads
running a program P.

A memory state σ = (σs, σ1, . . . , σn) is an evaluation of the program vari-
ables, where σs is an evaluation of the shared variables and σi is an evaluation
of the local variables of thread ti, for each i ∈ [1, n]. We define σ(x) = σs(x) if
x is a shared variable, otherwise σ(x) = σi(x) if x is a local variable of ti, for
some i ∈ [1, n]. We denote M the set of all memory states.

We consider the heap as a labeled graph G = (V,E), where nodes in V are
objects of struct type, and an edge in E represents the interpretation of pointer
fields of struct objects. For simplicity, we model numeric fields as node labels.
Therefore, σs(x), σi(x) is an integer if x is a basic type variable, and σs(x), σi(x)
is a node in the graph, representing memory location storing an object of the
x’s type, if x is a pointer variable.

For each comparison, expression and statement we can define a concrete
semantic JcK : M → bool, JeK : M → M and JsK : P(M) → P(M) for all σ ∈ M
and E ∈ P(M→M) by:

JnK(σ) = n n ∈ Z
JxK(σ) = σ(x) x ∈ Vars
Je1 � e2K(σ) = Je1K(σ) � Je2K(σ) � ∈ {+,−,×}

Je on 0K(σ) =

{
t if JeK(σ) on 0

f if JeK(σ) 6on 0
on∈ {=, 6=, >, . . . }

Jx := eK(E) = {σ[x← JeK(σ)] | σ ∈ E}
Jif c then s1 else s2K(E) = Js1K{σ ∈ E | JcK(σ) = t} ∪ Js2K{σ ∈ E | JcK(σ) = f}
Js1; s2K(E) = Js2K(Js1K(E))

To describe the semantic of the loops we use the notion of the least fix-point
(lfp):

Jwhile c do sK(E) =

{
σ ∈

⋃
i∈N

F i
b (E)

∣∣∣∣∣ JcK(σ) = f

}
= lfpFb

with Fb : P(M) −→ P(M)
E 7−→ JsK({σ ∈ E | JcK(σ) = t})

For the call of the function, we use the call-by-value semantic.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 5

The semantic of our concurrent programs that we consider is the interleaving
semantic. After each execution of an atomic bloc of instructions, any other thread
can execute an atomic bloc of instructions. This behavior of concurrent programs
can be modeled by a transition system (Σ, I, τ) where Σ is the set of every
reachable memory states, I is the initial memory state after having executed the
init method. The transition function τ is derived from the sequential execution
of each thread, where st always represents an atomic bloc in this case.

τt(E) := JstK(E)

This states that each step of the program execution is the execution of any single
thread t which only updates its local memory and the global memory and leaves
the memory of the other threads unchanged. Thus, we can define τ =

⋃
t∈T τt.

The set of reachable states of the whole program can be defined with a fix-
point.

Js1 ‖ · · · ‖ sn ‖ · · ·K({I}) =
⋃
i≥0

τ i({I}) = lfp τ

The semantic of the two built-in functions ATOMIC() and END_ATOMIC()
is different from the other instructions. They are used by the scheduler to know
that the code inside an atomic bloc cannot be interrupted by another thread. The
transition function τ can only be applied on atomic bloc as specified previously.
For example, for two threads:

JATOMIC(); s1;END_ATOMIC() ‖ s2K = Js1; s2K ∪ Js2; s1K

2.3 Concrete trace semantic

We can use another semantic with our parallel programs which is a trace seman-
tic. Better than keeping the memory states at each point of the program, we can
only keep the instructions executed, and we keep the order in which they were
executed. A trace is a sequence of atoms of the form (t, op) where t ∈ T is the
thread that executes the operation op. It can be an assignment, a comparison
or an arithmetic operation. We will also add the call of function of the form
inv fun, and the return of function with the value returned ret fun B val. We
denote as Tr the set of all traces T .

We notice that the trace is more expressive than the memory state at a given
point of the program because we can obtain the memory state from the trace.
Indeed, if we execute the different operations in the trace we can compute the
memory state exactly like if we executed the program. But the traces keep more
information. They can express relations between threads.

3 Description of the abstract domain

Definition 1. An abstract trace T ∈ Tr] is a partially ordered sequence of
atoms a1, . . . , an, that we denote as T = a1 · . . . · an. These atoms can be an

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

6 G. Cluzel et al.

invocation of a function (t, inv f), a return of a function (t, ret f B v), or a
write on the shared memory. Let a ≺ a′ if tid(a) = tid(a′) (where, if a = (t, op),
tid(a) = t) and a is executed before a′ or if there exists a data dependency
between a and a′ (i.e. a′ involves data written by a). A trace is complete if every
invocation has a matching response. The contretization γTr of an abstract trace
T is the set of all concrete traces that contain the atoms of T , that respect the
order verified by the atom in T and that have a shared memory state at the
end of the execution included in the concretization of the corresponding abstract
memory state.

The partial order ≺ on the atoms induces a partial order on the abstract
traces, i.e. if T = T1 · T2, we said that T1 ≺ T2 if there exist a ∈ T1 and a′ ∈ T2

such that a ≺ a′.

Definition 2. Two abstract traces T = a1 · . . . ·an and T ′ = a′1 · . . . ·a′k are equal
if there exists a bijective function ϕ : {a1, . . . , an} → {a′1, . . . , a′k} that conserves
the order.

The equality between two traces takes into account that we can reorder the
atoms in a trace because some of then are not ordered. This definition implies
that the two traces must have the same length, and then n must be equal to k
in the definition above. If for example we consider a trace T = a1 · a2 · a3 with
the only relation between a1 ≺ a3 the atoms, then the trace T ′ = a2 · a1 · a3 is
equal to T .

Definition 3. An abstract trace T is reduced if for all traces T1 and T2 such
that T = T1 · T2 then T1 ≺ T2.

Example 1. We consider the trace T = (t, inv f) · (t, X = v) · (t, ret f B 0). This
trace T because all the atom in the trace are ordered by the execution order.

Now we consider another trace T ′ = (t, inv f)·(t′, inv g)·(t, X = v)·(t′, ret g B
0) · (t, ret f B 0) and we state that there is no data dependence between the
threads t and t′. This trace is not reduced because, thanks to 2, we can reorder
the atoms of T ′ such that T ′ = (t, inv f) · (t, X = v) · (t, ret f B 0) · (t′, inv g) ·
(t′, ret g B 0). Since there is no interaction between the two thread, we have
rewritten T ′ in the form T ′ = T1 ·T2 and we don’t have T1 ≺ T2. Then we obtain
that T ′ is not reduced.

We do not want to make our traces infinite with irrelevant partial traces.
That could happen when we will have finished our analysis and we reanalyze a
function that have no dependency with the previous traces already found. Thus,
we consider the function red : Tr] → Tr] that associates to an abstract trace T
the smallest reduced trace:

red(T) = min{T0 | ∃T1, T = T0 · T1 ∧Mem(T0) v Mem(T)} (1)

where Mem(T) is the abstract memory state after execution of the operation in
the trace T .

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 7

More than an abstract trace, we need to keep the abstract memory state. Our
aim is to connect the different values input and output by the function. For that,
we need to use a relational abstract domain to represent the relations between the
values of the variables. We can use, for example, the octagon abstract domain [12]
to express these relations and we will use this abstract domain to represent the
abstract shared memory.

Definition 4 (Abstract value). An abstract value is a disjunction of pairs
(Ti, Si) where Ti ∈ Tr] is the abstract trace and Si is the abstract shared memory
state corresponding to the abstract trace T , existencially quantified on the threads
t1, . . . , tn. The concretization γ associate the most general concrete traces and
abstract states, i.e.

γ

(∨
i

(Ti, Si)

)
=
⋃
i

{(T,MTi
) | T ∈ γTr(Ti)}

where MTi
is the memory state after the execution of the trace T .

The join of two abstract values A1 = (T1, S1) and A2 = (T2, S2) cannot only
be the join of the abstract memory states S1 and S2, because the traces T1 and T2

that have lead to these memory states are not necessary the same. If we analyze
the code if rand(0, 1) = 0 then x := 1 else x := 2 on a thread t, we will get after
the affectation in the then part the abstract value (T1 = T · (t, x := 1), {x = 1})
and in the else part (T2 = T ·(t, x := 2), {x = 2}). Since the two traces T1 and T2

are not equal, we cannot consider to join the two abstract traces into a unique
trace. We would lose too much information.

Definition 5 (Join). Let A =
∨

i(Ti, Si) and A′ =
∨

j(T
′
j , S

′
j) two abstract

values. We define

A tA′ :=

 ∨
i,j

Ti 6=T ′
j

(Ti, Si)

 ∨
 ∨

i,j
Ti=T ′

j

(Ti, Si t Sj)

Widening We can extend the notion of reduction to an abstract value, and

red((T,M)) = (red(T),Mem(red(T)) tMem(T)).

This definition would useful to define the widening operator.
The idea of the widening here is to reduce the trace to only keep the relevant

part. In particular, in the concurrent data structures we consider, at the end of
every loop the global state is reset to have to its initial value to avoid to lock
the library. We haven’t found a widening that works in every case, but for our
needs we only need the following property of the widening:{

T1

S ∪ {X = 0}
∇

{
T1 · (t, X = 1) · (t, X = 0)

S ∪ {X = 0}
=

{
T1

S ∪ {X = 0}

This can be obtain by using the red operation.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

8 G. Cluzel et al.

stabilization The red function is not only used during the widening of the loop.
It is also used during the stabilization operation. The stabilization might in-
crease the length of the trace infinitely with irrelevant parts in the trace that
are the traces of other threads without interaction with the analyzed thread.
For example, if we consider a stack, where a push and a pop can exchange their
value without using the stack (see the next part), we only want to capture the
operation push+pop, and we are not interested in the other execution of pushs
and pops. Then, to prevent our traces to be similar to the following trace

T = (t, inv pop(3)) · (t′, inv pop(2)) · (t′, ret pop B 0) · (t, ret pop B 0)

we will reduce it to keep only the trace minimal. Here the minimal trace cor-
responds to T = ε because the abstract state before the execution of the two
function is the same that the initial abstract state.

4 Example of analysis

1 i n t F = 0, W = 1, C = 2;
2 s t ruc t exchanger {
3 i n t flag, value;
4 };
5 exchanger E
6 := {flag=F,value=0};
7

8 i n t push(e) {
9 whi le (1 = 1) {

10 ATOMIC();
11 i f (E.flag = W) {
12 E.flag := C;
13 E.value := e;
14 END_ATOMIC();
15 return 1;
16 }
17 END_ATOMIC();
18 }
19 }
20

21 i n t pop() {
22 whi le (1 = 1) {
23 ATOMIC();
24 i f (E.flag = F) {
25 E.flag := W;
26 END_ATOMIC();
27 ATOMIC();
28 i f (E.flag 6= C) {
29 E.flag := F;
30 }
31 e l s e {
32 E.flag := F;
33 i n t l := E.value;
34 END_ATOMIC();
35 return l;
36 }
37 }
38 END_ATOMIC();
39 }
40 }

Fig. 2. Exchanger stack

In this section we show an example of static analysis using our abstract
domain. The fixpoint computation we use is the one defined in [18] where thread
interfaces (rely-garantee actions) capture relations between relation of thread
operations where instead of using thread modular abstract of the state space we
use thread interfaces in our abstract domain that capture operation of different

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 9

threads. After having analyze each operation, if the shared memory state is
modified an action is generated. Before analyzing an operation, we stabilize
with all the actions that can be performed by the other threads.

We consider the exchanger stack, which is simply the Treiber’s stack [9] with
an exchange mechanism. An example of a such exchange mechanism is given in
the figure 2. The functions push and pop can also write on the stack but we do
not consider this part, and we focus on the exchange mechanism.

In this stack, a push and a pop can exchange their value without using
the stack. If the value of the variable flag is equal to F (Final), then a pop
executed by a thread t can change it to W (Waiting) meaning that it is waiting
for exchanging its value with a push. Meanwhile, a push executed by a second
thread t′ will detect that the value of the flag variable is equal to W, and the
push will change it in C (Collided) and puts its value e in the variable value.
The thread t that execute the pop can resume its execution and since the value
of the flag has changed and is now equal to C then it resets the flag and returns
the value passed by the push.

The aim of our analysis is to highlight the dependencies that exist between
a push and a pop. For example we will show that for every pop that returns a
value v, there exists a corresponding push that was called with the argument v.

Analysis of the init part The library is first called in a sequential mode to be
initialized. Here the initialization corresponds to the line 1 to 6, which is the
code executed when the library is initialized. The initialization step only sets
the variable E to its initial value, which means that we obtain as an initial state
for the memory, the state {E.flag = F ∧ E.value = 0}.

First step of the analysis The analysis starts with an empty trace and the
initial state for the shared memory discovered in the previous step. We start,
for example, by analyzing the pop function on a thread t. We could have chosen
another function to start our analysis, this choice is random.

We add to the trace the atom (t, inv pop()). At line 24, since the abstract
state contains the constraint E.flag = F, we analyze the following code and in
particular the write of the shared memory at line 25. Since the line 24 and 25 are
into an atomic bloc, we have to analyze both lines together without considering
interference by other thread between them, which mean that we do not stabilize
with the actions produced by other threads (even if, at this point we have not
generated any action yet).

At this point we add an atom at the end of the trace and we modify the
abstract state that represents the memory state. Since the shared memory has
been written, an action is generated, which is the transition between the previous
write on the memory (or the initial state if there is no previous write) and the
state after the write on the memory. In our case, the action generated is the

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

10 G. Cluzel et al.

following:{
T = ε

M = {E.flag = F ∧ E.value = 0}

∃t,
T = (t, inv pop()) · (t, E.flag = W)

M = {E.flag = W ∧ E.value = 0}

The abstract state generated by the action contains a “∃t” which means that
the action generated by the current thread become an action generated by any
thread. Thanks to this tricks we can keep the thread identity.

If we continue the analysis, we obtain that E.flag is flipped back to F because
we know in this case that E.flag is different than C. At this point we have to
generate another action because we have written the shared memory, and then
we go back at the beginning of the loop. When we apply the widening operator
after one iteration in the loop, we get the same abstract state than before the
first iteration because:

{
T = (t, inv pop())

M = {E.flag = F ∧ E.value = 0}
∇

{
T = (t, inv pop()) · (t, E.flag = W) · (t, E.flag = F)

M = {E.flag = F ∧ E.value = 0}

=

{
T = (t, inv pop())

M = {E.flag = F ∧ E.value = 0}

Then the analysis of the pop is finished.

Second step of the analysis Now the analysis uses another thread t′ to analyze a
function of the library. We will consider that the function push is analyzed during
the second step. Before the call of the push function, we have to stabilize with
all the possible actions from the other thread. Applying the reduce operation on
top of the stabilization give us the following initial abstract state for the push
analysis.{
T = ε

M = {E.flag = F ∧ E.value = 0}
∨

∃t
T = (t, inv pop()) · (t, E.flag = W)

M = {E.flag = W ∧ E.value = 0}

At the line 11, the test imposes to refine the abstract state with only the right
part of the disjunction, and then we get a new action after the affectations and
the return, at the end of the atomic bloc. After this first iteration we need to
widen with the abstract state got at the end of the loop after the first iteration
which is: {

T = (t′, inv push(e))

M = {E.flag = F ∧ E.value = 0}

because the other part of the abstract state was use in the if-then part, and
finished with a return. It left only the left part of the initial abstract state that
has not changed at the end of the loop.

We get the same abstract value than before the loop after a widening, because
we haven’t changed anything. This step is finished.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 11

Third step of the analysis We continue our analysis with another thread t. We
will analyze for example the pop function. We can start by stabilizing with all
the possible actions which give us the initial state to start the analysis of the
pop. After the stabilization and the execution of the call of the function, we
might have called 1) no function (then E.flag is equal to F), 2) only a pop and
changed the flag value to W or 3) a pop and a push and the value of the flag
is C and the variable value contains the value of the argument of the push. To
verify the condition at the line 24, it is mandatory that the flag is equal to F. In
this case, only the 1) in the abstract state verifies this condition.

When the analysis reaches the line 26, the atomic bloc is finished and we can
stabilize with all the possible actions. The action

∃t1,
T1 = (t1, inv pop()) · (t1, E.flag = W)

M = {E.flag = F ∧ E.value = 0}

∃t1, t2,
T = T1 · (t2, inv push(et2)) · (t2, E = {W, et2})
M = {E.flag = F ∧ E.value = et2 ∧ et2 = >}

can be applied now if we suppose that t1 = t. It is the only abstract value that
does not verify the condition at line 28. With this abstract value, we generate a
new action at line 32, that we can complete with the return that directly follow
the write in the global memory.

After one iteration of the loop, we need to widen with our operator ∇. Like in
the first iteration, the traces have increased with irrelevant atoms. The widening
operation will reduce our traces to remove them and to obtain, like in the first
step, a stable abstract value.

Next steps Up to this point we have partially prove what we wanted to obtain,
i.e. the trace

T = (t1, inv pop()) · (t1, E.flag = W) · (t2, inv push(et2)) · (t2, E = {W, et2})
· (t2, ret push B 1) · (t1, E.flag = F) · (t1, ret pop B et2)

that highlight that the input value of the push is returned by the pop. But the
analysis is not finished because the trace might increase infinitely. But as we have
designed the stabilization operation, this issue will not happen. In our case, if
we consider for example the trace T0 defined above, we observe that the abstract
memory after the execution of T is equal to M = {E.flag = F ∧ E.value = >}
and the abstract memory after the execution of the empty trace T0, is simply the
memory in the initial state, which corresponds to M0 = {E.flag = F∧E.value =
0}. Then we have M0 vM , and after the reduction, we get the following abstract
state: {

T = ε

M = {E.flag = F ∧ E.value = >}

The analysis will restart with this new abstract value. We will get the same
results than previously, with the initial value containing E.value = 0, but with
a more general beginning value. The analysis will finish with this new abstract
value as an initial state.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

12 G. Cluzel et al.

Finally, we have proved the property we wanted, which was that for every
pop that returns a value there exists a push, and the value returned by the pop
was an input parameter of the push. This property can directly be read on the
final traces we obtain when the analysis is finished. This example shows how our
abstract domain can be used to prove properties on a concurrent data structures
that uses cooperation between threads. Other data structures can be analyzed
with this abstract domain, like the Java’s exchanger.

5 Related work and conclusions

Static analysis by abstract interpretation is well perfected for numeric programs
in the sequential setting and also well studied for the concurrent setting with a
bounded number of threads [15, 12, 6]. Several successful approaches exist also
for programs manipulating sequential data structures [13, 10, 2]. However, static
analysis of concurrent data structures accessed concurrently by an unbounded
number of threads is a research area in its beginnings.

The current state of art is the thread modular approach [1, 16, 17], which
captures the effect of all threads on the shared memory, but cannot represent
the relation between the local states of two threads. Thread modular analysis
are incomplete, and cooperation based algorithms do not have a thread modular
proof.

The closest related works are [7, 3–5, 8]. In [3–5] the authors give a new defi-
nition of correctness for concurrent data structures, that implies linearizability,
but does not rely on linearization points. This way of specifying data structures
reduces linearizability to a reachability problem, and it was used to develop
powerful bug finding techniques based on model checking or SMT-solvers.

In [8] the authors highlight the need for concurrent specifications, for a sub-
class of concurrent data structures, including some of the structures we are
interested in. The paper defines a language to express concurrent specifications
and proposes a proof methodology to establish correctness of concurrent imple-
mentations with respect to a concurrent specification. No automation technique
for these proofs is discussed.

Probably the work closest to our is [7]. It presents a static analysis for concur-
rent data structures with external linearization points, which in fact correspond
to data structures that have a concurrent specification (as shown later in [8]).
The paper proposes a static analysis that captures relations between the local
state of threads. However, the proof method consists in rewriting the original
library into one that has a sequential specification, and static analysis is used
to prove the correctness of the rewriting. In the current paper we are interested
in proving directly the implementation correct with respect to the concurrent
specification, and we design an abstract domain that can capture the concurrent
specification and the invariants required to prove it.

In conclusion we study abstract interpretation for data structures that im-
plement cooperation mechanisms. We propose the first abstract that tackles
this class of programs. The abstraction captures relations between thread local

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Towards an abstraction for concurrent data structures 13

states and combines them with a trace abstraction. Our results are preliminary
but encouraging. We manually verified (a simpler version of) stack elimination,
java.exchanger, and validity.

References

1. Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv.
Thread quantification for concurrent shape analysis. In CAV, volume 5123 of
Lecture Notes in Computer Science, pages 399–413. Springer, 2008.

2. Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. On
inter-procedural analysis of programs with lists and data. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 578–589, 2011.

3. Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. On reducing
linearizability to state reachability. In ICALP (2), volume 9135 of Lecture Notes
in Computer Science, pages 95–107. Springer, 2015.

4. Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil.
Proving linearizability using forward simulations. In CAV (2), volume 10427 of
Lecture Notes in Computer Science, pages 542–563. Springer, 2017.

5. Ahmed Bouajjani, Constantin Enea, and Chao Wang. Checking linearizability of
concurrent priority queues. In CONCUR, volume 85 of LIPIcs, pages 16:1–16:16.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

6. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–96. ACM Press, 1978.

7. Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. Automatic lineariz-
ability proofs of concurrent objects with cooperating updates. In CAV, volume
8044 of Lecture Notes in Computer Science, pages 174–190. Springer, 2013.

8. Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. Modular verification of
concurrency-aware linearizability. In DISC, volume 9363 of Lecture Notes in Com-
puter Science, pages 371–387. Springer, 2015.

9. Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algo-
rithm. In SPAA, pages 206–215. ACM, 2004.

10. Huisong Li, Francois Berenger, Bor-Yuh Evan Chang, and Xavier Rival. Semantic-
directed clumping of disjunctive abstract states. In POPL, pages 32–45. ACM,
2017.

11. Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In PODC, pages 267–275. ACM, 1996.

12. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

13. Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

14. Nir Shavit and Asaph Zemach. Combining funnels: A new twist on an old tale..
In PODC, pages 61–70. ACM, 1998.

15. Thibault Suzanne and Antoine Miné. Relational thread-modular abstract interpre-
tation under relaxed memory models. In APLAS, volume 11275 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2018.

16. Viktor Vafeiadis. Shape-value abstraction for verifying linearizability. In VMCAI,
volume 5403 of Lecture Notes in Computer Science, pages 335–348. Springer, 2009.

Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

14 G. Cluzel et al.

17. Viktor Vafeiadis. Automatically proving linearizability. In CAV, volume 6174 of
Lecture Notes in Computer Science, pages 450–464. Springer, 2010.

18. Viktor Vafeiadis. Rgsep action inference. In VMCAI, volume 5944 of Lecture Notes
in Computer Science, pages 345–361. Springer, 2010.

