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Abstract. Affine arithmetic is a well known tool to derive first order
guaranteed approximations of general formulas over real numbers. It is
also a useful tool in static analysis to keep track of linear correlations
between program variables. However non-linear operations, like multipli-
cations or divisions, introduce compensation terms to over-approximate
the residue of the linearization process. Tight estimations of those terms
are of utmost importance to obtain precise abstractions and thus a use-
ful analysis. In this paper, we propose a new and simple technique to
compute precise compensation terms for divisions.

1 Introduction

Affine arithmetic [1, 2], like the well-known interval arithmetic, is a powerful tool
to compute guaranteed enclosures of general formulas. Each input or computed
quantity x is represented by an affine form x = αx

0 +αx
1ε1 + · · ·+αx

nεn where the
αx
i are real numbers and the εi are symbolic variables called noise symbols and

bounded by [−1; 1]. This representation allows to keep track of linear correlations
between the quantities of interest. Indeed, two quantities sharing a noise symbol
are partially dependent. Linear operations over affine forms are easily computed
as follows: x+ λy = (αx

0 + λαy
0) + (αx

1 + λαy
1)ε1 + · · · (αx

n + λαy
n)εn.

However, non-linear operations like multiplications [4] and divisions [3] are
problematic. Indeed, to obtain a result as an affine form, we have to linearize
those operations. Those mandatory transformations imply losing relations with
the operands and the introduction of a compensation term over-approximating
the non-linear part. This new term ensures the correctness of the result but
can lead to an affine form with an interval projection that is a huge over-
approximation of the real bounds of the computation. In the following, we pro-
pose a new approach for computing compensation terms for divisions that can
give drastically more precise projections when the operands share some relations.
The algorithm operates in two steps. First, we find upper and lower bounds of
the results of the division by using relations between the operands to obtain a
precise estimation. Then, we compute the compensation term using those bounds
to ensure a tight projection of the resulting affine form.
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2 Technique presentation

2.1 Finding the bounds

We present here how to find an upper bound of the expression x ÷ y where x
and y are affine forms and 0 6∈ y. We do not present how to find a lower bound,
but it can be achieve in a similar way.

We want to find an upper bound of x÷ y, i.e we are looking for a real λ such
as x÷ y ≤ λ for all possible assignments of the noise symbols. This condition is
equivalent to look for λ such as x− λy ≤ 0. This formulation of our condition is
linear in x and y and so can be computed exactly using affine arithmetic. This
means that we can define a decision procedure that, given a λ, can decide if it is
an upper bound of x÷y. All we have to do is to compute the affine form x−λy,
then find its upper bound and compare it to zero. We recall that the tightest
upper bound of this affine form is computed as (αx

0 − λα
y
0) +

∑n
i=1 |αx

i − λα
y
i |.

Using this decision procedure, finding a tight upper bound of x ÷ y comes
down to generating a sequence of candidates converging to the optimal bound.
An easy way to create this sequence is to use a dichotomy, starting with the
range [r, r] obtained with interval arithmetic. At each step, we compute the
upper bound σ of x− λy with λ = (r + r)/2. If σ is stricly less than zero, then
λ is an upper bound of x÷ y but not the tightest one, so we call the dichotomy
recursively with the range [r, λ]. In a similar way, if σ is strictly greater than
zero, then λ is lower than the upper bound of x÷ y and we call the dichotomy
recursively with the range [λ, r]. Finally if σ = 0 then λ is the tightest possible
upper bound and we are done. For now, we ensure a fast termination by limiting
the number of iterations. We will eventually change this and stop the dichotomy
when the range [r, r] is tight enough, with a notion of enough set by the user.

2.2 Computing the compensation term

The linearization of the division is classically computed using Taylor expansion
and leads to the following classical expression where ∆ is the compensation term:
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1
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0
2

(
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i α

y
0 − α

y
i α

x
0)εi +∆

)
(1)

Expressions for ∆ are straightforward to obtain based on equation (1). How-
ever, all those expressions have the same problem, we can not compute them
without introducing an over-approximation. Thus we need to find an expression
that will minimize this over-approximation. We propose to express the compen-
sation term as follows:

∆ =

(
n∑

i=1

αy
i εi

)(
αx
0 − α

y
0

x

y

)
(2)

Equation (2) is an interesting way of computing ∆ because it contains the
expression x÷y, for which a tight interval approximation can be computed using
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our dichotomy technique. Thus, computing equation (2) using interval arithmetic
will lead to a tight over-approximation of the compensation term. The resulting
interval can then be represented using an affine form introducing a new noise
symbol and added to the affine form representing x÷ y.

2.3 Example

Let us illustrate our technique on the simple example r = t/(t + 1) with the
input t = 499.5 + 499.5ε1 ∈ [0; 999]. Using the equation (1), the computed affine
form for r is as follows:

r =
1

500.52
(249999.75 + 499.5ε1 +∆) (3)

Without our dichotomy technique, the computation of the compensation
term using equation (2) gives us ∆ = 249500250εnew. The projection of r using
this result is [−995, 997], which is a huge over-approximation. Indeed, using our
dichotomy technique, we easily find that r ∈ [0, 0.999], which are its optimal
bounds. Injecting this new range in equation (2) gives us ∆ = 249500.25εnew.
Finally, the projection of r using this compensation term is [0, 2]. Our resulting
affine form is still an over-approximation, but a much tighter one.

3 Conclusion

Even if our technique seems promising, we still need to run benchmarks against
the standard technique described in [3]. We are confident that the dichotomy
technique will drastically improve the computation of divisions bounds. However,
raising the number of authorized iterations can step the computation time up
quite rapidly. A future improvement of this technique will be to implement the
idea of stopping the dichotomy when the range is tight enough.
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