
Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Flow Insensitive Relational Static Analysis

Solène Mirliaz1 and David Pichardie1

Univ Rennes, Inria, CNRS, IRISA

Abstract. Relational static analyses allow to keep track of the rela-
tions between variables in a program. They rely on relational abstract
domains like Octagon or Polyhedra. While expressive, these analyses are
often costly. To reduce these computations, we design a flow insensitive
static analysis that provides a single relational invariant for a whole pro-
gram. A specific representation of the program, namely the Static Single
Information (SSI) form, allows us to preserve a good precision (compare
to a flow-sensitive analysis) thanks to the indexing of the variables. We
report on the design and the soudness of the analysis, using an abstract
interpretation methodology. A prototype has been developped to test the
usefulness of the analysis on small programs.

Abstract Interpretation provides expressive symbolic techniques that are able
to automatically infer relations between program variables. They rely on rela-
tional abstract domain and generally attach one (flow sensitive) abstract element
to every program point of a program. At an other side of the spectrum, flow-
insensitive analyses [9] (such as Andersen’s pointer analysis [2]) compute one
global invariant for the whole program, sparing time and memory. Our goal is
to design an analysis with one relational invariant for the whole program, that
remains precise, using an intermediate representation borrowed from advanced
compiler techniques: the Single Static Information (SSI) form. This representa-
tion increases the number of variables but partitions their lifetime in a way that
benefits to flow-insensitive analyses. Indeed, this splitting guarantees that the
abstract state of a variable is invariant at each program point where the variable
is alive. It has been explored for non-relational or semi-relational [8] analyses.
This paper is the first to explore its usefulness for relational domains.

Outline We starts with the formal definition of the SSI form of a program as
well as the concrete semantics we consider (Section 1). This semantics is a set
of partial functions representing the environments. We then explain the need
to track precisely the domain of definitions of environments. Then in Section 3,
the abstract semantics of the program can be defined, using the principles of ab-
stract interpretation (the abstract domain is defined in Section 2). This abstract
semantics consists in a single invariant that can be concretized as an overapprox-
imation of the set of environments of the concrete semantics. Finally, we present
a prototype implementation and its preliminary results in Section 4. This paper
is a short version of a full companion report [7].



Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

2 Solène Mirliaz and David Pichardie

1 SSI Form and Concrete Semantics

Our analysis is performed on the SSI form of programs. The Static Single Infor-
mation form (SSI) [10], is an intermediate representation of programs. It extends
the SSA form to guarantee that any property infered on a variable holds from
its assignment (unique due to the SSA property) to its last usage. Control-flow
junction points are handled with a classic SSA φ operator [1], but branching
points may also receive a new σ information. When a variable is used in a con-
dition, then after this condition has been passed, we acquire new information on
the variable, and to guarantee the single information property we introduce a
new variable, which is a copy of the original one, that passes the test. Consider
a branching with tests j < 10 and j ≥ 10, then two new variables are introduced
such that j1 < 10 and j2 ≥ 10. This copy are assigned through a new intruction
σ, placed before the conditions: j1, j2

σ← j. The variable j1 is assigned only if the
test j1 < 10 holds after the copy. This ensures that the property j1 < 10 holds
starting at the assignment. An example of a program in SSI form can be found
in Figure 1. Assignments and assumes are attached to edges while φ−copies and
σ−copies are attached to nodes.

`0

`1

i1 ← 1

i2
φ← (i1, i5)

j2
φ← (j1, j5)
`2

i3, i4
σ← (i2)

j3, j4
σ← (j2)

j1 ← 0

`3

j3 < 10

`4

i5 ← i3 + 1

`5

j5 ← j3 + 1

`6

`7

j4 ≥ 10

(i4 = 11)

Fig. 1: SSI program example

Program representation The SSI intermediate representation of the program is
a tuple P = (E,A, J,B) such that: E is the set of edges (`1 → `2) in the CFG



Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Flow Insensitive Relational Static Analysis 3

(`1 and `2 are labels in L); A ∈ E → Atom associates to each edge `1 → `2
its atomic instruction given by the CFG; J (join) is a map from a label to the
set of φ-functions defined at this label; B (branch) is the equivalent map for
σ-functions. The set of programs is noted P. Let x φ← (`1 : x1, . . . , `k : xk) be
a φ-function attached to `. The term J(`)(x)(`1) = x1 can be read as “At `,
when coming from `1, the program assign x1 to x”. A σ-function is represented
the same way. If (`1 : x1, . . . , `k : xk)

σ← x is attached to `, then the term
B(`)(x)(`1) = x1 can be read as “At `, when going to `1, the program assign x
to x1”.

Single entry point We consider that the CFG (and so the SSI form) has only
one entry point `0 and that this entry point has no predecessors.

Concrete collecting semantics Programs manipulate variables (from set V) whose
values are stored in environments (from set E). The concrete semantics of a pro-
gram P is given by the function JP K ∈ L → P (E) that attaches to each CFG
label the corresponding set of reachable environments. It is defined as the least
fixed point of a global transfer function F which applies the transfer function of
each edge of the CFG, then joins the results.

JP K def
= lfp(F )

We will first detail the transfer function of an edge then detail F .
Let ` be a program point (different from `0). An enviroment s is reachable

at ` if there exists an environment s′ at a predecessor `′ of `, such that s is s′
on which was applied the following transformations (in order): (i) the potential
σ-copies from `′ to `, (ii) the atomic instruction from `′ to `, and finally (iii)
the potential φ-copies at `, coming from `′. We note T`′→` : P (E) → P (E) the
corresponding edge transfer function (details in [7]).

Let S ∈ L → P (E) be the current map of set of reachable environments. The
global transfer function F computes the reachable environments at label ` by
merging all edge transfer functions applied to predecessor sets.

F (S)
def
= ` 7→


S`0 if ` = `0⋃
(`′→`)∈E

T`′→`(S`′) otherwise

In the end, the semantics of the SSI program is the fixpoint of F .

Domain coherence As a result from this union, we have a set of partial functions
that may not have the same domain (some variables have been defined on an
edge and not on the others). In our example, the joining point `2 is associated
with the union of the environments from `1 and the ones from `5. The envi-
ronments from `1, after applying the transfer function from `1 to `2, have as a
domain {i1, j1}. On the other hand, the environments of `5 have as a domain
{i1, j1, i2, j2, i3, j3, i5, j5}. So the environments at `2 can have different domains.



Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

4 Solène Mirliaz and David Pichardie

2 Abstract domain

With one invariant for the whole program, our analysis is control flow-insensitive
and cannot determine if a variable may or may not be defined. As we update
this invariant, we need to determine if a variable is newly introduced or if the
property computed must be join with the one already present in the invariant.
For that, we need to represent, in the abstract domain, partial functions, which is
not possible in state of the art abstract domains [5]. There, the abstract domains
concretize into total functions (or at least partial functions with fixed common
domain).

To achieve our goal, we build an overlay around such abstract domain D,
which can be any numerical abstract domain. This overlay keeps track of which
variables may be defined, and which must not. It is equipped with abstract
union ∪], intersection ∩], monotone concretization γD+ ∈ D+ → P (E) and
sound abstractions of atomic instructions (details in [7]).

To compare our abstract semantics to the concrete one, we need to transform
our global invariant, which represent a set of environments in P (E), into a set
of reachable states in P (L × E) (as defined in the concrete semantics). This is
formalized with the concretization γ : D+ → P (L × E) defined as follow:

γ(X+) = {(`, s)|` ∈ L, s ∈ γD+(X+)}

Associating the complete concretization to each program point is a significant
overapproximation but it is compensated by SSI intrinsic properties that restrict
strongly the set of variables that may have been defined at each label.

3 Abstract semantics

We define the abstract semantics as the least fixpoint of the following global
abstract function F ]

F ]
def
= F ]0 ◦ ©

(`→`′)∈E
F ]`→`′

with F ]`→`′(X
+)

def
= X+ ∪] T ]`→`′(X

+) and F ]0(X
+)

def
= X+

0 ∪] X+.
Here, X+

0 is the abstract environment for the entry point, (S0 ⊆ γD+(X+
0 ))

and T ]`→`′ is the abstract semantics of edges (T`→`′ ◦ γD+ ⊆ γD+ ◦ T ]`→`′). Fol-
lowing the design of the collecting semantics, each T ]`→`′ is the composition of
(i) abstract parallel copies for σ-copie, (i) abstract atomic instruction between `
and `′, (iii) abstract parallel copies for φ-copies (details in [7]).

Theorem 1. F ] is sound with respect to F and γ, that is to say F ◦γ ⊆ γ ◦F ].

4 Implementation

We developped an OCaml prototype for this analysis. It takes as input a program
in a While language with assertions and the relational abstract domain to use
(any Apron domain [5]).



Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Flow Insensitive Relational Static Analysis 5

The output is the global invariant of the program. The analysis is iterative
and does not implement (yet) acceleration techniques. To increase precision (and
to delay unions), we build a single transfer function for each block (sequence of
connected edges without branching).

We did some experiments on small programs and compare them with In-
terproc1 flow-sensitive analyzer. We observe similar precision, except for some
programs where the lack of widening prevents us from terminating the fixpoint
computation.

5 Related work

Flow-insensitive analyses have often been considered because of their efficiency,
but few of them are able to provide relational invariants.

Global Value Numbering (GVN) is an example of such analysis. The goal of
GVN is to detect when two computations have equivalent results. The result
of this analysis can be used for optimizations: instead of computing again the
result, it can be copied. In 1988 Alpern et al. [1] proposed an algorithm for GVN.
Their main contribution was to detect equivalence despite control structures such
as conditionals. Their analysis requires the SSA form and builds a value graph
based on this form. This graph represent the symbolic computation made at the
assignments. The analysis compares the congruence of nodes in this graph to
determine the equivalence of the computation. This analysis is flow-insensitive,
and uses special nodes in this value graph to represent a conditional computation,
due to a branching in the control-flow graph.

ABCD [3] is an analysis that check that array accesses are safe (that is within
the bound of the array). Such analysis is used to remove the check around the
accesses, hence speed up the program. To perform an efficient flow-insensitive
analysis while keeping precision, ABCD uses the extended SSA form which is an
intermediate form that closely ressemble the SSI form. It uses the φ-functions
at join point, but instead of σ-functions before the branching, it insert π-copies
ot the beginning of each branch. With its specific goal of ensuring inequalities,
ABCD represent its invariant as a graph where an edge v →c w denotes the
contraint w − v ≤ c between the variables v and w and the constant c. This
method cannot be applied to any relational abstract domain.

This two examples do not use the concepts of abstract interpretation, but
they show that with an appropriate intermediate form, one can build a flow-
insensitive invariant. Also these two examples are relational analyses which en-
couraged us in the possibility of building such analysis.

An example of relational analyzer using abstract interpretation is PAGAI [4].
Although it is not sparse, it lightens the cost of the analysis by computing the
invariants at some program points only. These program points include the loop
heads, the assertions and user-defined program points. Although it is not flow-
insensitive, it is efficient. Several optimizations developped for this tool can be

1 http://pop-art.inrialpes.fr/interproc/interprocweb.cgi

http://pop-art.inrialpes.fr/interproc/interprocweb.cgi


Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

6 Solène Mirliaz and David Pichardie

applied to our analysis, for instance to reduce the number of variables actually
manipulated in the invariant.

Our abstract domain that represent partial environments can be compared
to the Maya domain [6]. In this domain, a variable v will be divided into two
variables v1 and v2. Each variable has its own constraints. If the variable v is
never defined, the constraints on v1 and v2 are chosen such that their conjunction
applied on v is impossible: for instance v1 < 0 and v2 > 0. This can express
interesting relations that our domain cannot but it not clear yet if our analysis
would benefit from it.

6 Conclusion

Our goal is to design a static analysis that combines efficiency – the analysis
must be sparse with only one invariant for the whole program – with precision –
it must keep properties between several variables, not just properties on single
variables. Abstract interpretation theory designs analyses with one invariant per
program point, but sparser relational analysis are possible, as shown with the
tool PAGAI [4]. This analyzer computes invariant per assertion points (chosen
by the end user) and at the loop head. We want to reach higher sparsity with a
unique invariant.

To compute a unique invariant, while keeping precision, we used or designed
several elements for the analysis. First we used the SSI form [10] that allows us
to differenciate versions of the variables. It is central for the flow-insensitivity.
Then the main element that we present in this paper is an overlay we designed
for abstract domains that can represent partial functions.

This preliminary works provides encouraging results for designing a sparse
relational static analysis. It should now be compared experimentally with ex-
isting analyzers such as PAGAI, both in term of efficiency and precision. On
a more theoretical exploration, we would like to reason on SSI intrinsic prop-
erties to formalize theorems about the precision of the analysis, compare to a
flow-sensitive version on a non-SSI program.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: POPL (1988)

2. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage: Ph. D. Thesis. Datalogisk Institut (1994)

3. Bodík, R., Gupta, R., Sarkar, V.: ABCD: eliminating array bounds checks on
demand. In: PLDI. ACM (2000)

4. Henry, J., Monniaux, D., Moy, M.: PAGAI: A path sensitive static analyser. Electr.
Notes Theor. Comput. Sci. 289 (2012)

5. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: CAV. vol. 5643. Springer (2009)

6. Liu, J., Rival, X.: Abstraction of optional numerical values. In: APLAS. pp. 146–
166 (2015)



Accepted for NSAD 2019 informal proceedings (https://staticanalysis.org/nsad2019/)

Flow Insensitive Relational Static Analysis 7

7. Mirliaz, S., Pichardie, D.: Flow insensitive relational static analy-
sis, http://perso.eleves.ens-rennes.fr/people/solene.mirliaz/docs/
FlowInsRel-MirliazPichardie-19.pdf, complete report

8. Nazaré, H., Maffra, I., Santos, W., Barbosa, L., Gonnord, L., Quintão Pereira,
F.M.: Validation of memory accesses through symbolic analyses. ACM SIGPLAN
Notices 49(10), 791–809 (2014)

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Berlin Heidelberg (2004), https://books.google.fr/books?id=RLjt0xSj8DcC

10. Pereira, F., Rastello, F.: Static Single Information form (2018), http://ssabook.
gforge.inria.fr/latest/book.pdf, chapter 11 in the SSA-book

http://perso.eleves.ens-rennes.fr/people/solene.mirliaz/docs/FlowInsRel-MirliazPichardie-19.pdf
http://perso.eleves.ens-rennes.fr/people/solene.mirliaz/docs/FlowInsRel-MirliazPichardie-19.pdf
https://books.google.fr/books?id=RLjt0xSj8DcC
http://ssabook.gforge.inria.fr/latest/book.pdf
http://ssabook.gforge.inria.fr/latest/book.pdf

	Flow Insensitive Relational Static Analysis

