
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

SARL: Framework Modeling for Static Analysis
Luca Negrini

Università di Verona and JuliaSoft SRL
Verona, Italy

Pietro Ferrara
JuliaSoft SRL
Verona, Italy

Abstract
Modern object-oriented applications make heavy use of
frameworks like AspectJ and ASP.NET. These frameworks
not only provide some library code, but they often extend
and modify the execution model of the object oriented soft-
ware. Therefore, a precise static analysis on such applications
needs to take into account such execution models, since each
framework may modify either the structure and/or the be-
havior of the application under analysis. In this paper we
introduce SARL, a domain-specific language that allows to
specify the behaviors of frameworks. Such language can
be applied to object-oriented programs using these frame-
works to annotate some components in order to model the
framework’s behavior. The experimental results show that
the number of false alarms produced by an industrial static
analyzer (Julia) can be greatly decreased using SARL.

1 Introduction
Static analysis allows to prove properties of computer pro-
grams without executing them. Such properties vary from
the absence of runtime errors, to functional correctness and
detection of illicit information flows. This is a very relevant
topic nowadays, since most industrial software deals with
users’ sensitive data that must not be disclosed, or run in
potentially hostile environments that could attack it if the
software is vulnerable (e.g., through SQL injections).
However, most software relies on external frameworks

(that is, third party libraries that provide an ad-hoc model
of execution) like AspectJ [1] and ASP.NET [2], avoiding
the reimplementation of common code in favor of reusable
and highly tested code written by more expert programmers.
The focus of such frameworks may be either (i) to provide
correct implementations of various functionalities, (ii) to
automatically generate useful code, or (iii) to give the pro-
gram a specialized structure that will be exploited at runtime
in order to obtain particular functionalities. In each of the
above scenarios, a static analyzer may end up raising alarms
on auto-generated code or on inherited design patterns. For
instance, a static analyzer without any specific knowledge
on ASP.NET would raise deadcode alarms on all the event
handlers, since these methods are not accessible to external
components and not explicitly called by the given applica-
tion. Such alarms are therefore considered as an imprecision
by the analyzer’s end users, while they are real unsoundness
of the analysis w.r.t. the real execution model of the appli-
cation. There are by now dozens of different frameworks
(with new ones appearing every month), and usually static

analyzers are not aware of their semantics, thus producing
an overwhelming amount of false alarms and/or missing to
analyze some parts of the code.
In this paper we present SARL (Static Analysis Refining

Language), a domain-specific language that is aimed at in-
structing static analyzers about the execution model of a
framework, thus refining their analyses and improving their
industrial usefulness. SARL is applicable to software writ-
ten in statically type-safe, object-oriented programming lan-
guages (e.g., Java and C#).
SARL has been implemented in Julia [11], an abstract in-

terpretation based semantic static analyzer. Julia analyses
bytecode obtained from the compilation of programs written
in Java, Android and C#. In Julia, annotations play a crucial
semantic role: they instruct the analysis about the structure
and the expected behavior of an application, and provide in-
formation between analysis components. From a framework
perspective, they can be used to model its behaviors. The
most relevant Julia’s annotations are (i) EntryPoint spec-
ifies that a method might be an entry point (that is, called
externally by the framework) of the application execution,
and (ii) ExternallyRead and Injected specify that a field
could be read or written (with arbitrary values) by the frame-
work, respectively. Such annotations could be also adopted
by the user to manually specify the behavior of the program.

Themain idea of SARL is to allow one to concisely produce
a set of rules, called framework specification, that describes
how applications relying on a framework might be executed.
Each rule specifies the conditions required to annotate a
program member (e.g., filed or method) with a specific kind
of annotation. Such a specification can be then automatically
applied to any application in order to produce a collection of
annotations whose semantics is already understood by Julia.

2 The SARL language
ASARL’s framework specification is built of five components:
(i) rules, (ii) implications, (iii) specifications, (iv) predicates,
and (v) library specifications. The main focus of a specifi-
cation is to add annotations to the code under analysis to
represent the execution model of a framework on a specific
application. Hence, each component (except for rules) aims
at defining the necessary conditions to apply specific anno-
tations to program’s members.

2.1 Conditions
Conditions are the basic blocks to define when a specifica-
tion should be applied. In particular, a condition may be (i)

1



the application of a predicate (via its name), (ii) a logical
operator (binary and, binary or, unary not) applied to other
conditions, (iii) a non-terminal condition (that is, a condition
that does not lead to a Boolean value, but has to be followed
by another condition), or (iv) a terminal condition (that is,
a condition that compares a value to a constant). A condi-
tion may target an annotation, a class, a field, a method, a
method’s parameter, or a method’s local variable. Each of
these targets may be queried for one of its properties, like
name, type or annotations.

For instance, line 18 of the ASP.NET specification in Figure
2 specifies to apply the annotation if the component satisfies
the predicate isNestedComponent.

2.2 Rules
A rule defines a condition to be satisfied in order to apply
the specification. It can be either (i) an analysis rule, defining
the object-oriented language to whom the framework might
apply (e.g., .NET or Java), or (ii) a code rule, defining what
should be found inside the target application. The use of a
framework can usually be identified by the use of specific
types as supertypes, or the use of some annotations from
the library. Hence, two types of code rules have been de-
fined: superclass rules and annotation rules, each checking
if the corresponding concept is used inside the application.
In addition, we introduced the always rule, that serves as an
always-true code rule, to allow one to apply a specification
to any analysis targeting a programming language.

Consider for instance the specification of AspectJ reported
by Figure 1. The first two lines report two rules specifying
that the specification should be apply if and only if (i) we are
dealing with a Java application (line 1), and (ii) there is at
least one annotation whose signature starts with org.aspectj
(line 2).

2.3 Implications
An implication lets one bind an implying annotation to a set
of implied annotations, such that a member that is annotated
with the implied annotation gets automatically annotated
with each annotation of the implied set.

Consider again the AspectJ specification in Figure 1. This
specification contains 6 implications: (i) the first one (lines
3 and 4) specifies that a PointCut annotation implies that
the component should be ignored by the deadcode checker
of Julia (since such methods are just placeholders for the
actual pointcut expression), (ii) the other five (lines 5-9) spec-
ify that components annotated with After, AfterReturning,
AfterThrowing, Around, and Before should be considered as
EntryPoint.

2.4 Predicates
A predicate is a construct that lets one assign an arbitrary
name to a condition, in order to avoid rewriting it over and

over again, and to make the overall specification more read-
able and maintainable.

Consider again the ASP.NET specification of Figure 2, and
in particular lines 4-6. This part of the specification defines
a predicate isNestedComponent that holds if both field’s type
and defining class satisfy predicate isControl. Such predicate
(line 3) holds if a class is subtype of Control.

2.5 Specifications
Specifications are the core component of SARL. A specifica-
tion consists of one or more annotations, and a condition
that states when such annotations have to be applied. A spec-
ification may target a class, a field, a method, or a method’s
parameter.

Consider again Figure 2, and in particular lines 17 and 18.
These specify to annotate with ExternallyRead and Injected
any field that satisfies predicate isNestedComponent.

2.6 Libraries specifications
A framework specification might need to annotate part of the
libraries, since the analyzer might need additional annotation
on library methods or fields. Therefore, SARL allows one to
specify annotations on library components by defining the
type of annotations together with the signature of the target
program member. Like specifications, a library specification
may target a class, a field, a method, or a method’s parameter.

Consider now the Windows Form specification in Figure
3, and in particular lines 20, 21 and 22. These specify to anno-
tate method System.Diagnostics.Process.GetCurrentProcess()
with ResourceThatDoesNotNeedToBeClosed, since in fact this
method (i) returns a Disposable object, but (ii) it is not nec-
essary to close it immediately (as, in fact, this represent the
current execution process). Without such annotation, Julia’s
CloseResource checker would produce a false alarm each
time this method is used by the application.

3 Experimental Results
In this section we report our experience when applying SARL
to refine the results obtained by Julia on some applications
relying on different frameworks (AspectJ [1], ASP.NET, and
Windows Forms [5]).

3.1 AspectJ
AspectJ is a Java framework for Aspect Oriented Program-
ming (AOP). In particular, it allows one to annotate methods
to identify them as advices. An advice is a method that will
be automatically invoked when its associated expression
(called pointcut) is met. Advice annotations specify when
the method should be invoked (e.g., @Before states that it
should be invoked before the corresponding pointcut). More-
over, AspectJ allows one to annotate methods as pointcuts.
Such methods become an alias for the actual pointcut ex-
pression, allowing their signature to be used instead of the

2



1 rule: analysis "java"
2 rule: annotation startsWith "org.aspectj"
3 implication: "aj.Pointcut" implies
4 "SuppressJuliaWarnings(value=deadcode)"
5 implication: "aj.After" implies "EntryPoint"
6 implication: "aj.AfterReturning" implies "EntryPoint"
7 implication: "aj.AfterThrowing" implies "EntryPoint"
8 implication: "aj.Around" implies "EntryPoint"
9 implication: "aj.Before" implies "EntryPoint"

Figure 1. AspectJ specification, where aj is a shortcut
for org.aspectj.lang.annotation

actual expression inside an advice. To test this framework,
we chose the Apache CXF example [4] from GitHub user
gmateo. This application is a lightweight example of pub-
lishing web services using Apache CXF [3], JAX-WS [8],
JAX-RS [7] and SpringFramework [6]. Moreover, it uses a bit
of AOP through AspectJ. While Spring, JAX-WS and JAX-RS
are natively supported by Julia, AspectJ is not. Hence, such
a small application is a good test target for the framework.

Julia’s analysis raises 14 warnings. Two of them are dead-
code alarms on methods annotated with @Pointcut, thus
they are just placeholders for the actual pointcut expression
and should not be subjects of such warnings. Figure 1 reports
the specification of AspectJ that solves these issues.
The first implication is enough to make the two warn-

ings about pointcuts disappear. However, the same kind of
warning would be raised also on advices, since they do not
get explicitly called from within the application. Thus, an
implication for each available advice is also needed. Note
that in our experiment, the only advice present inside the ap-
plication was not considered deadcode because it is declared
as a public method, hence being considered as an entry point
for the analysis by Julia.

3.2 ASP.NET
ASP.NET is a Microsoft framework to build C# web applica-
tions. The example application for this framework is the one
automatically generated by Visual Studio [12] when a new
ASP.NET project is created. Such application is chosen since
its small dimension makes it easy to fully check the precision
of the analysis, hence correctly identifying the components
of the specification.
Julia, when analyzing the Visual Studio’s ASP.NET gen-

erated application, raises 133 warnings: 64 about fields that
are never read, 1 about a field that is never written, 4 about
useless calls, and 66 about uncalled methods. Most of these
warnings are false alarms: every warning about both unread
and unwritten fields refers to fields that contain components
of the web page, while most of the uncalled methods are

1 rule: superclass "System.Web.HttpApplication"
2 rule: analysis ".net"
3 predicate: "isControl" = cls.subtypeOf "System.Web.UI.Control"
4 predicate: "isNestedComponent" =
5 and(fld.type satisfies "isControl",
6 fld.definingClass satisfies "isControl")
7 predicate: "isEventHandler" =
8 and(mtd.returnType "void",
9 and(mtd.numberOfParameters "2",
10 and(mtd.parameter and(par.index "0",
11 par.type "System.Object"),
12 mtd.parameter and(par.index "1",
13 par.type.subtypeOf "System.EventArgs")))))
14 specification: annotate methods with "EntryPoint"
15 if and(mtd.definingClass satisfies "isControl",
16 satisfies "isEventHandler")
17 specification: annotate fields with "ExternallyRead", "Injected"
18 if satisfies "isNestedComponent"

Figure 2. ASP.NET specification

event handlers for click events or page loading. Figure 2 re-
ports the specification of ASP.NET framework that solves
these issues.

Using such specification causes the number of warnings to
be lowered to 19, composed by 13 true alarms about uncalled
methods, 2 true alarms about useless calls, and 4 new true
alarms about useless assignments of local variables that were
previously not raised since their containing method was
wrongly considered deadcode.

3.3 Windows Forms
Windows Forms is a framework to build C# desktop applica-
tions. Usually, these UIs are developed through the designer
included in Visual Studio, that places each graphical com-
ponent inside fields, leading to the rise of a high number
of warnings about field usage (stating that a field can be
replaced by a local variable, or that the value written inside a
field is never read later) like ASP.NET. Moreover, each graph-
ical component in Windows Forms implement the IDispos-
able interface to allow the resources held by such component
to be automatically released when the contained form gets
closed. As example application for this framework we chose
ShareX [10], which is an open-source application for per-
forming screen captures. When analyzing ShareX with Julia,
that does not have knowledge of Windows Forms behavior,
many warnings about closable objects are raised (stating
that a resource is never closed). In fact, out of 5153 warnings,
3222 of them are about closable resources, and 972 are about
fields that could be either replaced by local variables, or that
hold values never read anywhere in the program. Figure 3
defines the specification of Windows Forms.

This specification lowers the total number of warnings to
1811, with 882 false alarms about closable resources. Such

3



1 rule: superclass "System.Windows.Forms.Form"
2 rule: analysis ".net"
3 predicate: "isComponent" = cls.subtypeOf "System.ComponentModel.

IComponent"
4 predicate: "isDisposable" = fld.type.subtypeOf "System.IDisposable"
5 predicate: "isNestedComponent" =
6 and(fld.type satisfies "isComponent",
7 fld.definingClass satisfies "isComponent")
8 specification: annotate fields with "ExternallyRead", "Injected"
9 if satisfies "isNestedComponent"
10 specification: annotate fields with "AutoClosedResource"
11 if or(fld.type.subtypeOf "System.Windows.Forms.ContainerControl",
12 and(satisfies "isDisposable",
13 fld.definingClass satisfies "isComponent"))
14 library: annotate methods with "

ResourceThatDoesNotNeedToBeClosed"
15 in class "System.Drawing.Brushes"
16 if name matches "get_.∗()LSystem/Drawing/Brush;"
17 library: annotate methods with "

ResourceThatDoesNotNeedToBeClosed"
18 in class "System.Drawing.Pens"
19 if name matches "get_.∗()LSystem/Drawing/Pen;"
20 library: annotate methods with "

ResourceThatDoesNotNeedToBeClosed"
21 in class "System.Diagnostics.Process"
22 if name equals "GetCurrentProcess()LSystem/Diagnostics/Process;"

Figure 3. Windows Forms specification

Framework # alarms # removed false alarms
AspectJ 14 2
ASP.NET 133 118
Windows Forms 5153 3342

Table 1. Experimental results

false alarms are due to imprecisions of Julia’s analyses, and
they cannot be addressed by the framework specification.

3.4 Discussion
Table 1 reports the results of the three applications we ana-
lyzed and discussed in this section. Despite being very con-
cise (between 9 and 26 lines), the specifications were already
effective to remove all the false alarms due to the lack of
framework knowledge in the Julia static analyzer. While we
expect that when we will apply these specifications to dif-
ferent applications we will need to extend them, we believe
that this is already a promising result of the application of
SARL to existing software.

4 Conclusion
In this paper, we (i) informally introduced SARL, a domain-
specific language to specify the execution model of a frame-
work to instruct a static analyzer, and (ii) applied this ap-
proach to three applications dealing with different frame-
works, studying how the number of false alarms was reduced
thanks to the specification. We are working on the formaliza-
tion of the language and its extension to other frameworks
like Java Lombok [9], .NET Xamarin [14] and Unity [13]. In
addition, currently SARL allows one to define a method as
an entry point (that is, it might be called with any input state
and in any order), but it does not provide any mean to specify
the order of execution of such methods. We plan to extend
existing annotations in order to support such scenario.

References
[1] AspectJ. 2018. https://www.eclipse.org/aspectj/.
[2] ASP.NET. 2018. https://www.asp.net/.
[3] Apache CXF. 2018. http://cxf.apache.org/.
[4] Apache CXF example. 2018. https://github.com/gmateo/

apache-cxf-example/.
[5] Windows Forms. 2018. https://docs.microsoft.com/it-it/dotnet/

framework/winforms/.
[6] Spring Framework. 2018. https://spring.io/.
[7] JAX-RS. 2018. https://github.com/jax-rs/.
[8] JAX-WS. 2018. https://github.com/javaee/metro-jax-ws/.
[9] Lombok. 2018. https://projectlombok.org/.
[10] ShareX. 2018. https://getsharex.com/.
[11] F. Spoto. 2016. The Julia Static Analyzer for Java. In Proceedings of SAS

’16 (LNCS). Springer.
[12] Visual Studio. 2018. https://www.visualstudio.com/.
[13] Unity. 2018. https://unity3d.com/.
[14] Xamarin. 2018. https://visualstudio.microsoft.com/xamarin/.

4

https://www.eclipse.org/aspectj/
https://www.asp.net/
http://cxf.apache.org/
https://github.com/gmateo/apache-cxf-example/
https://github.com/gmateo/apache-cxf-example/
https://docs.microsoft.com/it-it/dotnet/framework/winforms/
https://docs.microsoft.com/it-it/dotnet/framework/winforms/
https://spring.io/
https://github.com/jax-rs/
https://github.com/javaee/metro-jax-ws/
https://projectlombok.org/
https://getsharex.com/
https://www.visualstudio.com/
https://unity3d.com/
https://visualstudio.microsoft.com/xamarin/

	Abstract
	1 Introduction
	2 The SARL language
	2.1 Conditions
	2.2 Rules
	2.3 Implications
	2.4 Predicates
	2.5 Specifications
	2.6 Libraries specifications

	3 Experimental Results
	3.1 AspectJ
	3.2 ASP.NET
	3.3 Windows Forms
	3.4 Discussion

	4 Conclusion
	References

