Experiments in Context-Sensitive Incremental and
Modular Static Analysis in CiaoPP
(Extended Abstract)

Isabel Garcia-Contreras!?, Jose F. Morales', and Manuel V. Hermenegildo!?

L IMDEA Software Institute
isabel.garcia, josef.morales, manuel.hermenegildo{@imdea.or,
g J g g
2 Universidad Politécnica de Madrid

Keywords: Program Analysis - Abstract Interpretation - Fixpoint Algorithms -
Incremental Analysis - Modular Analysis - Logic Programming

Introduction and motivation. Abstract interpretation is a widely used technique
for automatically detecting errors and proving program properties related to correct-
ness, security, cost, etc. Performing such analysis during software development helps
in early bug detection, but, given the size and complex structure of real-life pro-
grams, triggering a complete reanalysis for each set of changes is often too costly.
However, development iterations normally involve small modifications in practice,
which are often isolated within a small number of files or components. This can be
taken advantage of to reduce the cost of re-analysis by reusing previous informa-
tion. In particular, in CiaoPP [4, 2], incrementality-based cost reductions have been
achieved to date at two levels: on one hand, modular context-sensitive analysis
has been used to obtain global information on the whole program by iterating over
local analyses of its components (modules). While this technique has been primarily
aimed at reducing memory footprint, it can also achieve some incrementality. On
the other hand, fine grain context-sensitive incremental analysis [3] identi-
fies, invalidates, and recomputes only those parts of the analysis results that are
affected by program changes. This analysis has been used to achieve very high levels
of incrementality, with finer granularity (e.g., at program line level), but it does not
take advantage of the module structure.

Objectives. We have recently been working on combining these two techniques
within CiaoPP in order to achieve incrementality both at the intra- and inter-
modular levels. Extending the context-sensitive, fine-grained, incremental analysis
techniques to the modular setting requires dealing with the fact that the analysis
of a module depends on the analysis of other modules in complex ways, through
several paths to different versions (summaries) of the procedures. In order to bridge
this gap we have developed a framework that analyzes separately the modules of
a modular program, using context-sensitive fixpoint analysis while achieving both
inter-modular (coarse-grain) and intra-modular (fine-grain) incrementality. Our ob-
jective is to give an overview (and demo) of the approach and, specially, report on
the results (i.e., incremental gains) obtained so far.

Algorithm. The essence of the algorithm is that the concrete (possibly infinite)
program execution trees are abstracted as graphs (essentially, regular trees), with
the analysis information split by procedure (predicate), and partitioned by module,
while tracking the dependencies between predicates and modules. We solve the prob-
lems related to the propagation of the fine-grain change information across module

18
16

12
10

o N »

0

20 40 60 80 100 120 140 160

0)
0 20 40 60 80 100 120 140 160

0

20 40 60 80 100 120 140 160

0
0

boyer pdb boyer gr boyer def boyer shfr
T T T T T T T 30 T T T T T T T 50 T T T T T T T 60 T T T T T T T
mon + ** mon + 45 F mon + + + B mon +
+ ! R A -) !
mon_inc X ot 25 fmon_inc x T % mon_inc X 50 f-mon_inc x + 4
= mod + " Bl mod B mod #] mod
| mod_inc 3 e] 20 | mod_inc M | 35 |-mod_inc + SR 40 | mod_inc R M |
. /«g”‘*" ’ * 30 *://f 1 /
+ E %
i
x 15 8 25 . g 30 —
L ::*""& . . g » o0 b /% 1 ¥
rL N 1 10f 1 1sh 1 20r 1
: « B + ¥ L 1
W S % S e 10 x s 10F 1
4 -M"W 5t & Tt T ' B S o AR IR
i W R W W S R o T it e W—— i

20 40 60 80 100 120 140 160

Fig. 1. Incremental analysis with different settings and domains

boundaries. We also work out the actions needed to recompute the analysis incre-
mentally after multiple additions and deletions across modules in the program. We
show that the analysis result is always correct and it is the best (most accurate)
over-approximation of the actual behavior of the program. The full description of
the algorithm is given in [1].

Ezxperiments. The results of our experiments are also detailed in [1] and can be re-
produced in https://github.com/ciao-lang/ciaopp_tests, but we include here
some results for one characteristic program: a stylized version of the Boyer-Moore
theorem prover, written modularly in Prolog. The experiment chosen consists in
adding all the predicates in all the modules in the program one clause at a time,
(re)running the analysis after each addition, as a stress test of the algorithm. The
experiment is run with different domains: reachability (pdb), groundess (gr), depen-
dency tracking via propositional clauses (def), and sharing and freeness, (pointer
sharing and uninitialized pointers, shfr). The results (in terms of CiaoPP analysis
time) are given in Fig. 1. The analyzer settings shown are the traditional monolithic,
non-incremental analysis (mon), the (monolithic) incremental algorithm (mon_inc),
the modular (coarse-grain incremental) algorithm (mod) and the current, fine-grain
modular algorithm (mod_inc). It can be seen that the modular incremental approach
is faster in most cases, and all incremental approaches are significantly faster than
the traditional, non-incremental approach. In spite of the different costs of the vari-
ous abstract domains (e.g., analyzing with def takes at most 40ms while analyzing
with pdb takes at most 17ms), the trend is clear: incremental analysis performs
better than running the analysis from scratch. In general, the implementation and
evaluation show that the proposed modular algorithm achieves competitive and, in
some cases, improved, performance when compared to existing non-modular, fine-
grain incremental analysis techniques. Furthermore, thanks to the more detailed
propagation of inter-modular analysis information, our new algorithm outperforms
the traditional modular analysis even when analyzing from scratch.

References

1. Garcia-Contreras, 1., Morales, J.F., Hermenegildo, M.V.: An Approach to Incremental
and Modular Context-sensitive Analysis. Tech. Rep. 1804.01839 (v4), arXiv (July 2019)

2. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated Program De-
bugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao
System Preprocessor). Science of Comp. Progr. 58(1-2) (2005)

3. Hermenegildo, M.V., Puebla, G., Marriott, K., Stuckey, P.: Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS 22(2), 187-223 (March 2000)

4. Hermenegildo, M., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J., Puebla,
G.: An Overview of Ciao and its Design Philosophy. TPLP 12(1-2), 219-252 (2012)

