AUTHCHECK: Program-state Analysis for
Access-control Vulnerabilities

Goran Piskachev!, Tobias Petrasch?, Johannes Spith!, and Eric Bodden'3

! Fraunhofer IEM, Germany
{goran.piskachev, johannes.spaeth}@iem.fraunhofer.de
2 BCG Platinion, Germany
petrasch.tobias@bcgplatinion.com
3 Paderborn University, Germany
eric.bodden@upb.de

Abstract. According to security rankings such as the SANS Top 25 and
the OWASP Top 10, access-control vulnerabilities are still highly rele-
vant. Even though developers use web frameworks such as Spring and
Struts, which handle the entire access-control mechanism, their imple-
mentation can still be vulnerable because of misuses, errors, or incon-
sistent implementation from the design specification. We propose Au-
THCHECK, a static analysis that tracks the program’s state using a finite
state machine to report illegal states caused by vulnerable implementa-
tion. We implemented AUTHCHECK for the Spring framework and iden-
tified four types of mistakes that developers can make when using Spring
Security. With AuTHCHECK, we analyzed an existing open-source Spring
application with inserted vulnerable code and detected detected the vul-
nerabilities.

Keywords: static analysis, access control, authentication, authoriza-
tion, web systems, security

1 Introduction

With increasing popularity and amount of processed data, web applications are
attractive targets for attackers. The access-control vulnerabilities are still ones
of the most relevant as rankings show. For instance, five of the SANS Top Qﬂ
most dangerous vulerabilities are related to access-control. On the OWASP Top
1(E| ranking, on place two is broken authentication vulnerability and on place
five is broken authorization vulnerability.

Nowadays, web frameworks are heavily used by software developers [19].
Modern frameworks, such as Spring[fJand Struts.[]provide mechanism for access-
control making developers’ implementation effort smaller. At runtime, the actual

* https://cwe.mitre.org/top25/

® https://www.owasp.org/index.php/Top_10-2017_Top_ 10
5 https://spring.io/

" https://struts.apache.org/

https://spring.io/
https://struts.apache.org/

2 Piskachev et al.

access-control checks of such mechanism are performed within frameworks’ code,
hereby software developers do not need to write customized access-control code
and implementation bugs are avoided.

Instead of writing access-control code manually, frameworks allow software
developer to specify the access rules via framework specific APIs. Spring, for in-
stance, provides a fluent interface with specification language SpEL [3] combined
with Java annotations to allow the specification of access rules.

However, implementing the access-control rules using the frameworks APIs
according to a design specification, created by the software architect, remains
a challenging task. The access-control is often a combination of annotations of
methods, a specifications in a configuration class, and a set of permission groups
for the resources of the system (i.e., URI). The resulting access control of the
implementation easily diverges from the design specification and the application
may accidentally grant an unauthorized user access to confidential data.

In this paper, we propose a typestate-inspired analysis for detecting three
access-control vulnerabilities:

— CWE-306 missing authentication [8] - The system does not perform an iden-
tity check on a request to a resource which by design should be accessed only
be identified requests.

— CWE-862 missing authorization [9] - The system does not perform a check
whether an authenticated request has the correct rights to access a resource.

— CWE-863 incorrect authorization [7] - The system performs an authorization
check on the resources, but this check is wrong.

Our static analysis uses finite state machines (FSMs) of each vulnerability to
track the authorization state of the program. The state changes are triggered
by method calls that authorize the user or access a critical resource along the
control flow paths.

The main contributions of this paper are:

AuTHCHECK: a program-state analysis for access-control vulnerabilities,
an implementation of AUTHCHECK for the Spring Security framework,
— a running example and four typical errors in Spring Security, and

a case study demonstrating the applicability of the implementation.

The following section introduces our running example within the Java Spring
framework. In Section [3] we provide background information and definitions for
the AUTHCHECK approach, which is then introduced in Section [l Implementa-
tion details are discussed in Section[5} A case study and limitations are discussed
in Section

2 Running Example

As running example consider a minimal web-application that helps a user to
organize her tasks. An anonymous user browsing the web application must only
see the web applications version number. A user that is authenticated can view

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

tasks assigned to herself. An administrator (group ADMIN) can create new tasks
for a particular user.

Tabledetails the design specification of the web-application’s REST-API [10].
The specification maps the URI of an incoming request to the actual API method
which shall be invoked to process the incoming request. Table [1] additionally de-
tails the permissions required for each request. A software architect specifies
these requirements and hands them to a software developer.

Table 1: Specification resources and access rules in the running example

HTTP URI Resource Description Access rule

GET /version version() Returns application’s version. No rule

GET /profile profile() Returns user profile. Authenticated
GET /task retrieveAll() Returns list of all tasks. USER or ADMIN
CREATE /task create() Creates new task. ADMIN

Spring-based Implementation The software developer uses the Spring framework 1]
to implement the software as specified. Spring provides a security component [2]
that ships with a mechanism for access control of resources. Spring handles re-
quests from users via chain of filters (chain of responsibility design pattern [IT]).
The requests are matched and processed based on their URIs.

1 public class WebSecurityConfig extends
WebSecurityConfigurerAdapter {
2 @Override

3 protected void configure(HttpSecurity http) throws
Exception {

4 http.csrf().disable().sessionManagement ()

5 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)

6 .and().authorizeRequests ()

7 .antMatchers (HttpMethod.GET, "/version").permitAll ()

8 .antMatchers (HttpMethod.GET,

"/task") .access ("hasAnyRole (’USER’>, ’ADMIN’)")
9 .antMatchers (HttpMethod.CREATE, "/task").hasRole ("USER")
10 .antMatchers (HttpMethod.GET,

"/profile") .authenticated () .and () .httpBasic();
1}

Listing 1.1: Resource and access-control configuration of the running example
implemented with Spring Security

Listing shows the implementation of Table [using Spring Security. By
the use of a fluent interface the developer can implement the chain of filters that

4 Piskachev et al.

is applied upon each incoming request at runtime. Each filter is created through
the method antMatcher(..) defined by the HTTP method and the URI of the
resources which that filter can process. The permitA11() method allows any
request to access the resource. The authenticated(..) method creates a filter
that restricts the incoming request to the one where the useer is authenticated.
The hasRole(..) method allows access to the resource by any request that has
the role of the specified group. The access(...) method evaluates the specified
argument which has to be defined in the Spring Ezpression Language (SpEL)
[3], and when evaluated to true, allows the corresponding request to access the
resource.

The implementation has inconsistency with the specification. The software
developer erroneously allowed basic users (USER) to create new tasks as opposed
to restricting the action to ADMINSs only. AUTHCHECK detects the deviation
from the specification automatically.

3 Background and Definitions

3.1 Typestate Analysis and Program-state Analysis

Typestate analysis [20] is a data-flow analysis that can detect invalid states
of objects from the code being analyzed. The analysis uses specification of all
possible states of the object, typically expressed as final state machine (FSM).
For example, using the F.SM of the type java.io.File Writer, in a given program,
the analysis can report if any object of type java.io.File Writer is not closed
at the end of the program. Another example is CogniCrypt [13], a typestate
analysis for detecting API misuses of cryptographic libraries.

To detect access-control vulnerabilities, such as CWE-306 [8], CWE-862 [9],
and CWE-863 [7], we designed a program-state [5] [I2] analysis. Similar to the
typestate analysis, the program-state analysis uses F'SM to track the states, not
of single objects, but the state of the program. Figure [1| shows the FSM that
models the program states when detecting CWE-306. Based on our running ex-
ample (Section [2), the acm() (authentication-critical method) is replaced by one
of the resources, e.g. profile(). The legal states are NA (not authenticated) and
A (authenticated). The init() transition models the entry point of the analysis,
which in this case is the arrival of a request from a user. If the request is for the
resource profile(), the application has to make sure that the call to the method
authenticate() from Spring was successfully called before. This is modeled by the
transition with label authenticate(). If this transition was fired, the state of the
FSM will be changed from NA to A. In case, the implementation of the appli-
cation does not contain a call to the method authenticate(), when the resource
profile() is requested, the FSM will go to the state CWE-306, which models an
illegal state and this can be reported.

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

init() @ authenticate() @
acm()

acm()

Fig.1: FSM for missing authentication CWE-306

3.2 Definitions

Before we introduce the AUTHCHECK approach (Section , we define the term
web application. In the following, we introduce the required terms. A user is a
client program, e.g. web browser, that can send requests to the server.

Definition 1. Authorization group

Authorization group g is boolean characteristic of a user u with a unique name
and access rights. A user can belong to more authorization groups. The set of all
authorization groups is G:

G ={g: | g; is an authorization group,1 <i <m, m € N}

The function userGroups: U — Pow(G) maps each user u € U to the au-
thorization groups. Pow(G) is the power set of G. We define the help function
hasRole: U x G — B, that expresses whether a user u belongs to an authorization
group g: hasRole(u, g) := g € userGroups(u)

Each user that is authenticated in the system belongs to the special autho-
rization group ANONYMOUS.

Authorization formula is a boolean formula a, formed by the function has-
Role, true, false, and the operators V, A, .

Definition 2. Resource

An authentication and authorization critical resource is a 4-tuple r = (m,p, s, a),
where m is HTTP method, p is URIL, s is a method signature, and a is an au-
thorization formula that defines the access rule of the resource. Access to the
resource is given when a is evaluated to true for a request of a user u. Users
identify each resource with the URI p and the HTTP method m. The corespond-
ing method in the system is identified by the signature s.

Definition 3. Web application
A web application W, is 2-tuple W = (R, G) , where R is a set of resources and
G is a set of authorization groups.

5

6 Piskachev et al.

Ezxample The web application from Section [2] has the authorization groups AD-
MIN, for administrators and USER, for basic users. By default, it also has
the ANONYMOUS group. Thus, G = {ANONYMOUS,ADMIN,USER}.
The set of resources has 4 elements (Table . The first resource is defined as
r1 = (GET, /version, String version(),ay), where a1 (u) = true.

We consider a user u with userGroups(u) = {ANONYMOUS, USER}. It
this user requests the resource r, the access will be allowed because a;(u) =
true. However, a request to the resource r4 will be denied because a4(u) =
hasRole(u, ANONY MOUS) A hasRole(u, ADMIN) = false.

4 Approach

We present AUTHCHECK, a program-state analyis for detecting three access-
control vulnerabilities, CWE-306, CWE-862, and CWE-863. The analysis uses
a call graph of the program (deatailed in Subsection [5.2) and an access-control
specification model (ACSM), like the one in Table CSM is defined as a
web application S = Wg, where Wg = (Rg,Gg) (Definition . ACSM can be
created manually by software architects or automated from requirements and
design specifications. Either way, we assume that the following information is
available: resource API, URI, and access rule, that is aware of the autorization
groups in the system.

AuTHCHECK checks whether the call graph confirms the ACSM by checking
each path from the call graph. To extract all paths, the depth first search DFS
algorithm is used. AUTHCHECK uses F.SM for each vulnerability, e.g. Figure
Algorithm [2 shows the tracking of each path with the FSM. The FSM starts in
the initial state (e.g. NA in Figure (1)) and for each node of the path a new state
of the FSM is calculated (line 4 in Algorithm [2). If an error state is reached (e.g.
CWE-306 in Figure , a new vulnerability will be reported.

For each path, the function Detect Vuln is called which is defined by Algorithm
2l DetectVuln uses the FSM to analyse the path.

Algorithm 1 Check the call graph against vulnerabilities

1: function CHECKCALLGRAPH(CallGraph, FSM)
2: Paths + DFS(CallGraph)
Vul + 0
for each p € Paths do
Vul + Vul U DETECTVULN(p, FSM)

return Vul

The complexity of Algorithm (I is O(|V| + |E| + |P| - T(DETECTVULN)),
where V' is the number of nodes, F is the number of edges, and P is the number
of paths in the call graph. In DetectVuln, every node of the path is analyzed,
resulting in O(|P|). The worst case path is the one with all nodes from the call

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

Algorithm 2 Checking each path against vulnerabilities

1: function DETECTVULN(Path, FSM)

2: v < FSM—init()

3 for each n € Path do

4 v < FSM—nextState(n)

5 if ve FSM.ERROR_STATES then
6: return new Vulnerability(v)
7

8

9

if ve FSM.NOT _ERROR_STATES then
return new Vulnerability(v)

return

graph |V|. Additionally, the number of paths in the worst case is |E|. Thus, the
total complexity of Algorithm [1]is

OV +[El+[P|-[V]) = O(V|+ |E| + V] - |[E]) = O([V| - | EI)
In the following, we discuss the three the FSM used by AUTHCHECK.

Missing Authentication A program is vulnerable to CWE-806 when an authentication-
critical method (acm()) can be accessed by user that has not been authenticated
before. AUTHCHECK models this vulnerability as shown in Figure [I] Authenti-
cation critical methods are all resources that in the ACSM have an access rule

that requires authentication. The error state in Figure [I| is reached when an
authentication-critical method is processed next in a given path and the current
state of the FSM is NA (not authorized). In this case, the program-state analysis

will create a vulnerability (Algorithm [2} line 8).

Missing Authorization and Incorrect Authorization CWE-862 occurs in a given
program when a non-authorized user u can request an authorization-critical
method (azem()). If the user is authorized but the belonging group g does not
confirm the access rule for that authorization-critical method as specified in
the ACSM (hasRole(u, g) = false), then incorrect authorization occurs (CWE-
863). Figure 2| shows the FSM that AUTHCHECK uses to model CWE-862 and
CWE-863. The transitions with the label azem() without an argument denote
calls to an authorization-critical method when the user is not authorized. When
there is an argument g, the user has been authorized and the belonging group
is being checked. This happens in state A2. When the user’s group evaluates
to true the self transition of state A2 is fired, otherwise the transition to state
CWE-863 is fired. AUTHCHECK performs a group hierarchy check.

Strategies for detecting critical methods The transitions acm() in Figure [1f and
azem() in Figure [2[denote an authentication-critical and authorization-critical
method. These methods correspond to the resources defined in the ACSM. In
the following, we discuss AUTHCHECK’s strategies for detecting these methods
in the call graph.

8 Piskachev et al.

azcm(g)

init() authenticate() authorize()
” () ()

azcmy() azem()

azcm(g)

Fig.2: FSM for missing authorization CWE-862 and incorrect authorization
CWE-863

Algorithm 3 Identifying methods as authentication-critical

1: function ISMETHODAUTHENTICATIONCRITICAL(R, s)
2: for each r € R do

3: if ro = s’ then

4: return true

5 return false

In the case of CWE-306, the authentication-critical methods are detected by
iterating the set of all resources R from the ACSM for each method M that is
currently processed in the path. The complexity for this strategy is O(|M|-|R)).

Algorithm (] shows the AUTHCHECK strategy to identify the authentication-
critical methods in the call graph for CWE-862. When checking the CWE-862,
each method M currently processed in the path is classified as authorization-
critical if the method is contained in the ACSM as a resource and the access rule
is not tautological. The evaluation of the authorization formula depends on the
number of relevant authorization groups used in the authorization formula. For
the calculation, all possible combinations V g € Pow(G") of relevant authoriza-
tion groups G’ must be evaluated. For a worst-case authorization formula with
|G| authorization groups, the resulting complexity is O(|M]| - |R]| - 2I¢1).

Algorithm [5] shows the AUTHCHECK strategy to identify the authorization-
critical methods in the call graph. For each resource in the ACSM, it checks
whether its signature matches the signature of the method M currently pro-
cessed in the call graph. In addition, the authorization formulas are checked.
The runtime depends on the number of relevant authorization groups. For the
calculation, all possible combinations V g € Pow(G’) of relevant authorization
groups G’ must be evaluated. For a worst-case authorization formula with |G|
authorization groups, the resulting complexity is O(|M| - |R| - 2 - 2!€).

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

Algorithm 4 Identifying methods as authorization-critical

1: function ISMETHODAUTHORIZATIONCRITICAL(R,)
2: for each r € R do

3 if ro = 5" and rq is not tautological then

4: return true

5 return false

Algorithm 5 Identifying methods as authorization-critical and group-belonging

1: function ISMETHODAUTHORIZATIONCRITICAL(R, 8", a’)
2: for each r € R do

3: if rs = s’ and eval(r,) = eval(a’) then

4: return true

5 return false

5 Spring Security AUTHCHECK

We implemented the AUTHCHECK concept from Section [d] as a Java application
that checks the implementation of a given Java Spring Security application and a
given ACSM. We used the Soot framework [14] for the analysis. In the following,
we discuss the architecture of our implementation, the insights of the call graph
construction, and the four typical developer’s mistakes with Spring Security that
AUTHCHECK can detect. Our implementation is available on Github [18].

5.1 Architecture

The AUTHCHECK tool follows a pipeline architecture, since it consists of several
sequential phases that work on shared artifacts. Our AUTHCHECK implementa-
tion consists of 3 phases:

1. Call graph construction: parses the code, the Spring Security configuration,
and annotations, and constructs the call graph,

2. Call graph update: patches missing edges into the call graph based on Spring
Security configuration,

3. CWE analysis: analyzes the call graph against CWE-306, CWE-862, and
CWE-868 based on Section [l

The design an extendable architecure of the tool. Figure [3] shows the meta-
model of the main components of the tool. The root class is the Analysis that
contains all components. The Phase can process objects of type Artifact. In
our implementation, the call graph instance, FSMs, and ACSM are defined as
artifacts. The final results of the analysis are stored in a Result object which can
be presented via Presenter object. Our tool has one presenter, that generates
HTML pages (see Section@ and Figure . In this architecture new phases can be
added easily. Furthermore, new types of vulnerabilities can be created as FSM
and added as artifacts in the analysis.

10 Piskachev et al.

<« opereates

o | |

) « artifacts) phases P
Artifact O—Q Analysis GEE—— Phase
<« results i\/ presenter »

1.* 1.*

« presents

Result n Presenter

Fig. 3: UML class diagram of AUTHCHECK implementation for Spring Security

5.2 Call Graph Construction

Phase 1 constructs the call graph using the class hierarchy algorithm and extracts
the Spring Security configuration needed in phase 2 to complete the missing
edges in the call graph due to reflection. The extracted information is prepared
according to Definition [3] Each critical method is annotated with its URI and
HTTP method. This is transferred together with the signature of the method
into a resource according to the Definition

The Spring Security configuration is extracted from the program using an
intraprocedural analysis. A special case is the method access(a), which can take
as an input a SpEL formula. For this, we use the Spring mechanism to evaluate
the string values containg the SpEL formula.

An authorization formula is assigned to a resource when the defined filter
matches the method and the URI. If multiple authorization formulas are applied
to a resource, they are associated with a logical AND (A).

The extracted information is stored as web application (Definition . Then,
in phase 2, the missing edges are added to the call graph according to Algo-
rithm [6] The algorithm gets the extracted web application W, and generated
call graph CallGraph. For each resource, it is checked whether the Spring Frame-
work performs an authorization check, authentication check, or no access check.
Accordingly, an edge is created to the critical method from the authorize(), au-
thenticate(), or init() methods.

Algorithm 6 Adding missing edges in the call graph

1: function CREATEMISSINGEDGES(W; = (Ry, Gy), CallGraph)

2: for each r € R; do

if ISMETHODAUTHORIZATIONCRITICAL(R s, 7sig) then
CallGraph— addEdgeFromAuthorize(rsig)

else if isMethodAuthenticationCritical(Ry,rsig) then
CallGraph— addEdgeFromAuthenticate(rsig)

else
CallGraph— addEdgeFromInit(rsiq)

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

5.3 Developers’ mistakes

As demonstrated in Listing the access-control rules in Spring Security are
specified with the SpEL fluent interface. With this approach, we foresee two
factors that can lead to inconsistencies of the implementation and the intended
design. First, the developer should be familiar with the domain specific language
SpEL in order to specify the antMatchers correctly, i.e. in the correct order. Sec-
ond, the string values of some of the arguments are not parsed and automatically
checked. Based on that, we identified 4 mistakes that developers can make when
using Java Spring Security.

Missing or wrong authentication rule: The developer forgets to include the
authentication filter authenticated() for the URI of a particular resource in the
configuration or uses the filter permitAll() to incorrectly allow access to all users.
However, in the specification model, the resource requires valid authentication.
If no filter is specified, this is equivalent to the filter permitAll(). As a result, any
user without authentication is able to request this resource. The error causes the
security vulnerability missing authentication CWE-306.

Missing authorization rule: The developer forgets to include one of the autho-
rization filters hasRole(role) or access(rule) for the URI of a particular resource.
However, according to the ACSM, the resource requires a valid authorization.
The filter authenticated() leads to the same error because it only checks the au-
thentication of the user. Depending on the filter used, either all users or only
authenticated users are able to request this resource. The error causes the secu-
rity vulnerability of missing authorization CWE-862.

Incorrect authorization rule: The developer incorporates an authorization
filter hasRole(role) or access(rule) for the URI of a certain resource, but a wrong
authorization formula is used. As a result, a user without the required access
rights is able to request this resource. The error causes the security problem of
incorrect authorization CWE-863.

Method call with higher access rights: The developer creates a correct con-
figuration for the resource, but in a deeper layer of the application, a call to a
method is created that requires higher access rights and therefore should not be
called by the user. The error causes the security problem of incorrect authoriza-
tion CWE-863.

We implemented an extended version of the running example from Section
[2] that includes the four mistakes and serves as a test scenario for our imple-
mentation. It is available under [I8]. The tool generates a HTML page with all
vulnerabilities detected. Figure [4] shows a detected CWE-306 in our running
example, including the path and description for solving the issue.

6 Case Study

We used the open-source project FredBetEI to perform a case study that demon-
strates the applicability of our analysis.

& https://github.com/fred4jupiter/fredbet

11

12 Piskachev et al.

X Path from Spring.run to com.example.demo.entity.User.constructor

CWE 306
Path Description
o NIT In this path there is no authentication method called but the method
Spring.run com.example.demo.controller.UserController.profile needs a valid authentication.
o CRITICAL_AUTHENTICATION
com.example.demo.controller.UserController.profile How to fix?
0 JNKNOWN Please add authentication to the method
com.example.demo.service.UserService.getUser com.example.demo.controller.UserController.profile
Q UNKNOWN

com.example.demo.entity.L

Fig. 4: Screenshot from AUTHCHECK generated output with CWE-306

6.1 FredBet

The web application FredBet is a football betting system developed with Java
Spring Boot and Spring Security. FredBet offers the possibility to initiate an
online football bet with several users. In addition to the betting, the web appli-
cation offers statistics about the matches, rankings, a profile management, and
many other functions. The application is actively developed since 2015 and as
of July 2019, it’s repository has more than 1300 commits.

Since we have access only to the implementation and no design specification
is available from which we can infer an ACSM, we decided to create the ACSM
based on the implementation and insert the four types of mistakes discussed
in Subsection 5.3 We focused on the AdminController from FredBet and made
code modifications. AUTHCHECK analyzed the AdminController and detected
the inserted vulnerabilities.

6.2 Limitations

When applying AUTHCHECK to FredBet, we realized that the specification scope
in Spring Security is much broader than the available documentation. This means
that there are many ways to specify the same configuration information when
one develops an application. For example, a developer can specify an URI for
a given class containing critical methods. This URI is then concatenated to the
URIs of the critical methods it contains. Then, the annotations can have different
formats or even some can be skipped, like the HTTP method, which in such case,
a default value GET will be considered by the framework. The configuration of
the antMathers (see Listing can have different parameters. Such broad scope
of specification options, is currently not supported by the AUTHCHECK parser.
Even though, this is a technical disadvantage, in order to prepare AUTHCHECK
for more complex web applications, the parser needs to be extended.

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities

7 Related Work

Security vulnerabilities caused by the misuses of access-control mechanisms have
been investigated by Dalton et al. [6]. The approach examines access-control
problems by analyzing the flow of user credentials within the web application.
In contrast to AUTHCHECK, their approach is dynamic and can not be used for
early detection of the vulnerabilities.

Sun et al. [21] introduced a static analyis approach for the detection of access-
control vulnerabilities. They assume that the source code contains implicit doc-
umentation of intended accesses. From this, sitemaps for different authorization
groups are generated and checked whether forced browsing can happen. Another
static analysis specific for access-control of XML documents was introduced by
Murata et al. [16]. They use XPath representation for the access-control rules
and XQuery for specifying the requests. The analysis checks all paths defined
by the query against the XPath rules. Naumovich et al. [I7] proposed a static
analysis for Java EE applications where the resources are security fields from
the Java Beans objects.

In the area of model checking, few approaches address the access-control
protocols [15] [22]. In these approaches, the focus is to validate the message
communication of the defined protocols. Similarly, Alexander et al. applied model
checking to verify the authentication mechanism in the comminication of a set
of interacting virtual machines [4].

8 Conclusion and Future Work

Even though sophisticated Java web frameworks, such as Spring, provide se-
cure mechanism for access control of resources, for many developers using the
APIs and the configuration specifications correctly, can be challenging. Thus,
these misuses may cause access-control vulnerabilities in the code. In this paper,
we presented AUTHCHECK, a static analysis, that tracks the program-state to
detect the vulnerabilities CWE-306, CWE-862, and CWE-863. Based on finite
state machine specification of each vulnerability, AUTHCHECK checks each path.
We implemented the approach on top of the Soot framework and applied it to
one open-source project on which we detected four types of errors that were
previously inserted in the existing application.

We plan to evaluate the precision of AUTHCHECK in cooperation with indus-
try to overcome the problem of the open-source projects of not having a design
specification on which we can check the implementation against. Additionally,
in future the choice of the call graph algorithm should be evaluated.

References

1. Spring framework, java spring. https://spring.io/projects) online; accessed 9
March 2019

13

https://spring.io/projects

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Piskachev et al.

. Spring framework, java spring security. https://spring.io/guides/topicals/

spring-security-architecture, online; accessed 9 March 2019

Spring framework, spring expression language. https://docs.spring.io/spring/
docs/5.0.5.RELEASE/spring-framework-reference/core.html, online; accessed
12 March 2019

Alexander, P., Pike, L., Loscocco, P., Coker, G.: Model checking distributed manda-
tory access control policies. ACM Trans. Inf. Syst. Secur. 18(2), 6:1-6:25 (Jul 2015)
Ball, T., Rajamani, S.K.: The slam project: Debugging system software via static
analysis. In: Proceedings of the 29th ACM SIGPLAN POPL. pp. 1-3. POPL ’02,
ACM, New York, NY, USA (2002)

Dalton, M., Kozyrakis, C., Zeldovich, N.: Nemesis: Preventing authentication and
access control vulnerabilities in web applications. In: Proceedings of USENIX. pp.
267-282. SSYM’09, USENIX Association, Berkeley, CA, USA (2009)
Enumeration, C.C.W.: Incorrect authorization. https://cwe.mitre.org/data/
definitions/863.html, accessed 12 March 2019

Enumeration, C.C.W.: Missing authentication for critical function. https://cwe.
mitre.org/data/definitions/306.html, accessed 12 March 2019

Enumeration, C.C.W.: Missing authorization. https://cwe.mitre.org/data/
definitions/862.html, accessed 12 March 2019

Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis (2000), university of California, Irvine

Gamma, E., Vlissides, J., Johnson, R., Helm, R.: Design Patterns CD: Elements
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1998)

Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
blast. In: Proceedings of the 10th International Conference on Model Checking
Software. pp. 235-239. SPIN’03, Springer-Verlag, Berlin, Heidelberg (2003)
Kriiger, S., Spath, J., Ali, K., Bodden, E., Mezini, M.: CrySL: An Extensible
Approach to Validating the Correct Usage of Cryptographic APIs. In: ECOOP.
pp. 10:1-10:27 (2018)

Lam, P., Bodden, E., Lhotak, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011) (Oktober 2011)

Marrero, W., Clarke, E., Jha, S.: A model checker for authentication protocols. In:
Rutgers University (1997)

Murata, M., Tozawa, A., Kudo, M., Hada, S.: Xml access control using static
analysis. ACM Trans. Inf. Syst. Secur. 9(3), 292-324 (Aug 2006)

Naumovich, G., Centonze, P.: Static analysis of role-based access control in j2ee
applications. SIGSOFT Softw. Eng. Notes 29(5), 1-10 (Sep 2004)

Petrasch, T., Piskachev, G., Spaeth, J., Bodden, E.: Authcheck spring implemen-
tation. https://github.com/secure-software-engineering/authcheck/, online
del Pilar Salas-ZAarate, M., Alor-HernAandez, G., Valencia-GarcAna, R.,
RodrAnguez-Mazahua, L., RodrAnguez-GonzAglez, A., Cuadrado, J.L.L.: Ana-
lyzing best practices on web development frameworks: The lift approach. Science
of Computer Programming 102 (2015)

Strom, R.E.: Mechanisms for compile-time enforcement of security. In: Proceedings
of the 10th ACM SIGPLAN POPL. pp. 276-284. ACM, New York, NY, USA (1983)
Sun, F., Xu, L., Su, Z.: Static detection of access control vulnerabilities in web ap-
plications. In: Proceedings of USENIX. USENIX Association, Berkeley, CA, USA
(2011)

https://spring.io/guides/topicals/spring-security-architecture
https://spring.io/guides/topicals/spring-security-architecture
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/core.html
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/core.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/862.html
https://github.com/secure-software-engineering/authcheck/

AuTHCHECK: Program-state Analysis for Access-control Vulnerabilities 15

22. Xu, Y., Xie, X.: Modeling and analysis of authentication protocols using colored
petri nets. In: Proceedings of the 3rd ASID. ASID’09, IEEE Press, Piscataway, NJ,
USA (2009)

	AuthCheck: Program-state Analysis for Access-control Vulnerabilities

